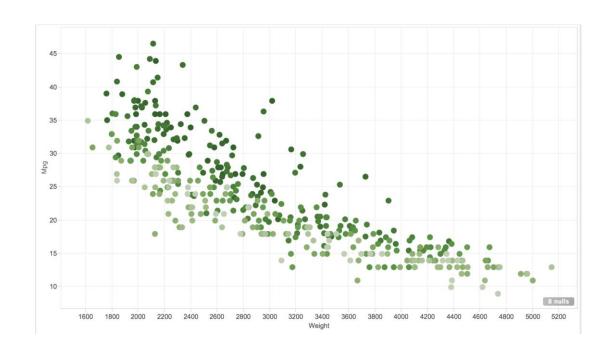
Interactive Axis

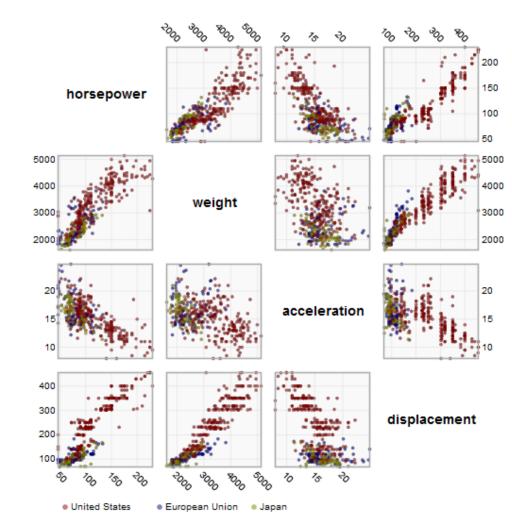
InterAxis: Steering Scatterplot Axes via Observation-Level Interaction

IEEE VAST 2015

Hannah Kim¹, Jaegul Choo², Haesun Park¹, Alex Endert¹

Georgia Tech¹, Korea University²

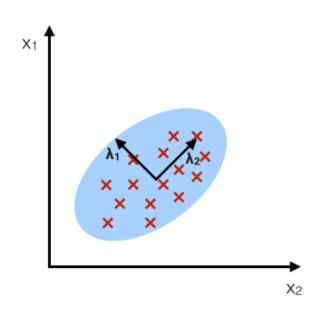

October 28th 2015

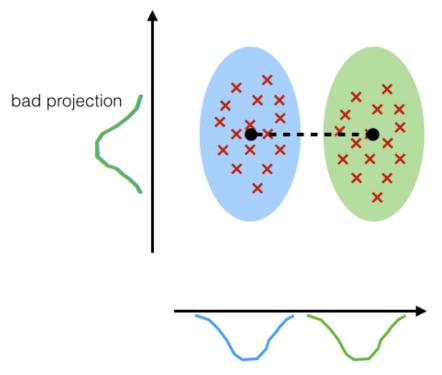

How would you visualize high-dimensional data?

Example - Car Data

Vehicle Name	Retail Price	Dealer Cost	Engine Size (I)	Cyl	НР	City MPG	Hwy MPG	Weight	Wheel Base	Len	Width
Acura 3.5 RL 4dr	43,755	39,014	3.5	6	225	18	24	3,880	115	197	72
Acura 3.5 RL w/Navigation 4dr	46,100	41,100	3.5	6	225	18	24	3,893	115	197	72
Acura MDX	36,945	33,337	3.5	6	265	17	23	4,451	106	189	77
Porsche 911 GT2 2dr	192,465	173,560	3.6	6	477	17	24	3,131	93	175	72
Acura RSX Type S 2dr	23,820	21,761	2	4	200	24	31	2,778	101	172	68
Acura TL 4dr	33,195	30,299	3.2	6	270	20	28	3,575	108	186	72
Acura TSX 4dr	26,990	24,647	2.4	4	200	22	29	3,230	105	183	69
Audi A4 1.8T 4dr	25,940	23,508	1.8	4	170	22	31	3,252	104	179	70
Audi A4 3.0 4dr	31,840	28,846	3	6	220	20	28	3,462	104	179	70
					•••						

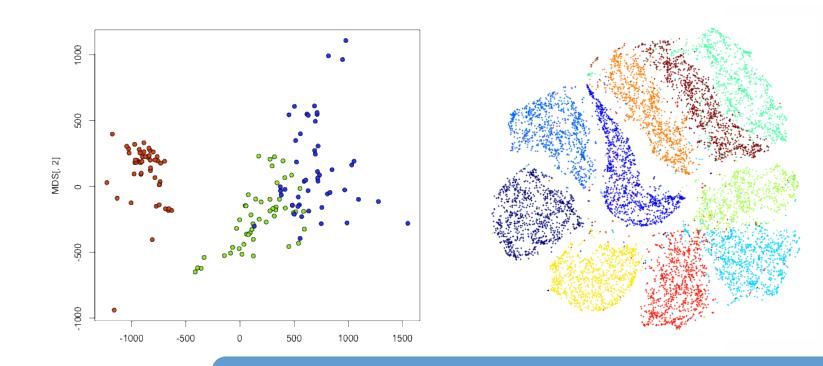
Scatterplot / Scatterplot Matrix

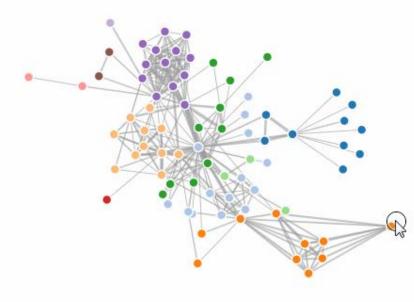




Dimension Reduction: Linear

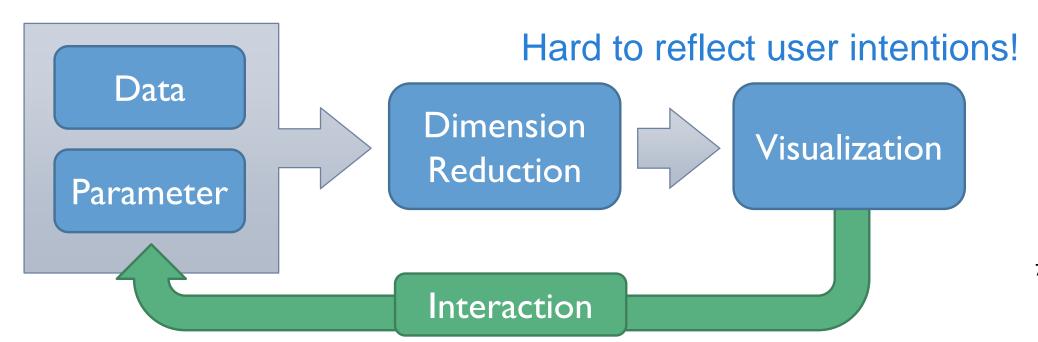
- Principal Component Analysis (PCA) Linear Discriminant Analysis (LDA)
 - Linear combination of attributes that maximizes the variance


- - Linear combination of attributes that separates classes well



Dimension Reduction: Nonlinear

- Multidimensional Scaling (MDS)
- t-Distributed Stochastic Neighbor Embedding (t-SNE)
- Force-Directed Layout



Interpretability Issue Axes do not have clear meaning or are not defined at all.

Another Issue - Interactivity

- Dimension reduction techniques are generally automated.
- Interaction with dimension reduction techniques is not easy.
- To make adjustments, one has to try different parameters and check visualization results.

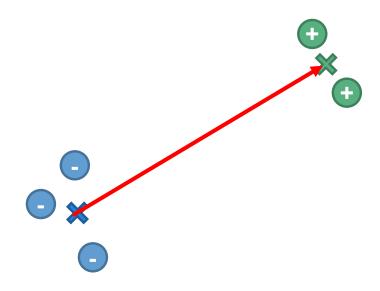
Can scatterplot axes be interpretable and interactive?

With InterAxis...

- Users pick two (or more) data items with semantic meanings
 - Ones they like vs. ones they don't like
 - Ones they are interested in vs. ones they don't care
 - and so on ...
- Then, InterAxis automatically calculates an axis that reflects the semantic meanings.
 - Data items similar to the first group has high values and data items similar to the second group has low values.
 - Each feature's contribution(weight) to the axis is visualized in a bar chart.

Observation-Level Interaction

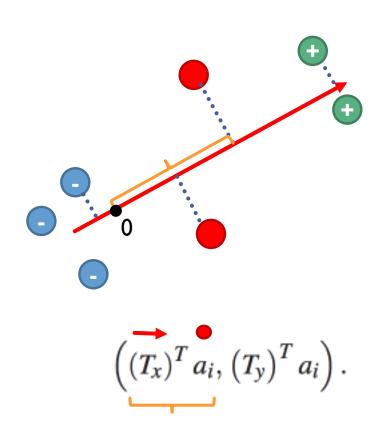
- Direct interactions with visual objects to reflect user intent
 - Data-level: data objects (dots)
 Find data items that quantify subjective preferences
 - Feature-level: features (bars)
 Directly manipulate contributions/
 weights of features that represent an axis



Live Demo - Car Data

http://va.gatech.edu/projects/interaxis/

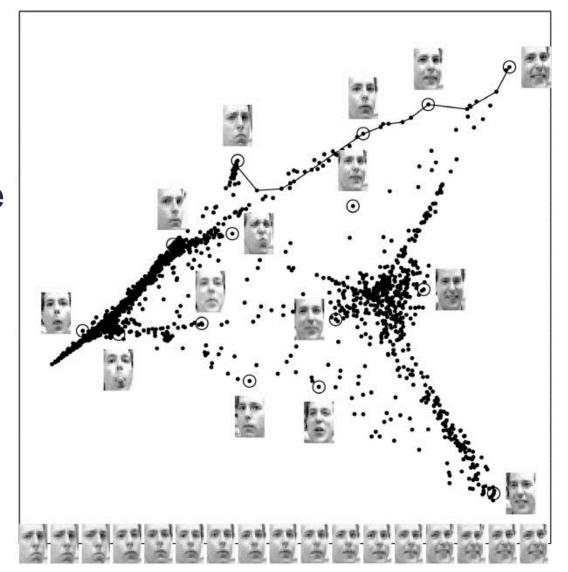
Behind The Scenes (1)


- Select two semantic groups of data items
- Find centroids of each group
- Subtract one from the other to get a projection vector
- Normalize the vector

$$T_{x} = \frac{1}{n_{x,h}} \sum_{i=1}^{n_{x,h}} a_{i}^{x,h} - \frac{1}{n_{x,l}} \sum_{i=1}^{n_{x,l}} a_{i}^{x,l}.$$

Behind The Scenes (2)

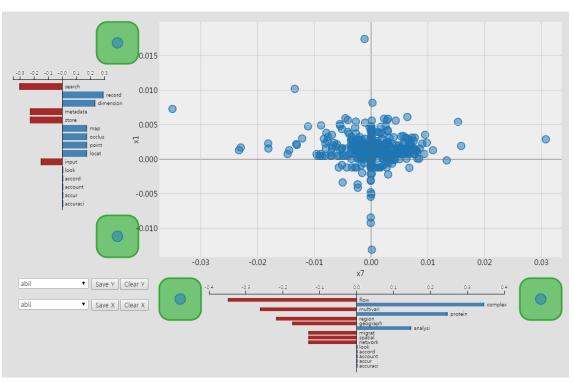
- Project origin (0,0) onto the axis vector
- Project data items onto the axis vector
- New coordinate value is the distance from the projected origin to the projected data point.



Discussion: Beyond Linear Models (1)

	Automated	User-Driven
Linear	PCA	InterAxis
Non-linear	Manifold learning (e.g., LLE, Isomap)	?

Discussion: Beyond Linear Models (2)


- InterAxis represents an axis as a weighted linear combination of data attributes.
- However, semantic meanings are not necessarily "linear".
 - E.g., drawing a curve that means a progression of frowning to smiling

Discussion: Handling Sparse Data

- Few non-zero entries for an attribute (or for an item)
- Common in significantly high-dimensional data
 - E.g. text, image, gene expression data

- We have to assign more data items to specify an axis.
- One solution is to aggregate multiple attributes into a group.

Summary

- We introduce InterAxis, a visual analytics technique that enables users to
 - Directly define and manipulate axes via observation-level interactions
 - Understand data attributes that quantify subjective preferences

