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a b s t r a c t

Visualization of data can assist decision-making processes by presenting the underlying information in a
perceptible manner. Many dimension reduction techniques have been proposed to generate faithful
visualization snapshots given high-dimensional data. When class labels associated with the data are
already provided, supervised dimension reduction methods, which utilize such pre-given label
information as well as the data, have been effective in revealing the overall structure of data with
respect to their pre-given class labels. However, the main principle of most of these supervised methods
has been to enhance class separability, which generally leads to significant distortion of original
relationships. To compensate for such distortion, we propose a novel doubly supervised dimension
reduction approach that highlights both natural groupings conforming to original relationships and classes
determined by pre-given labels. Our method imposes minimal supervision on the pre-given class
information depending on their original distributions while imposing additional supervision on natural
groupings to better preserve them in reduced feature space. Specifically, we apply the notion of doubly
supervised dimension reduction to a state-of-the-art method called t-distributed stochastic neighbor
embedding and present a new formulation and an algorithm. By performing both quantitative and
qualitative analyses, we demonstrate the effectiveness of our method using various visualization
examples on real-world data. Our results show that, compared to other existing methods, the proposed
method better preserves the original high-dimensional relationships while simultaneously maintaining
class separability and preserving cluster structures. In addition, due to the characteristics of preserving
natural groupings, the visualization results generated by our method reveal interesting sub-groups that
cohesively preserve the original relationships in the data.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the big data era, data are being collected easily in many
settings in industry, science, and engineering. However, analysis
on them is becoming more challenging than ever because of their
complex nature and scale, often obfuscating the tasks to be solved.
In these problematic situations, visualization can be helpful in
facilitating decision-making processes by providing users with an
overview of data.

Most real-world data are typically encoded as high-dimensional
vectors as they can be effectively represented using a large number of
features. One of the key methods for visualizing high-dimensional
data in the form of a 2D/3D scatter plot is dimension reduction, and
several well-known dimension reduction methods such as principal

component analysis (PCA) [1] and multidimensional scaling (MDS) [2]
have been widely applied in visualization applications. In general, the
main idea behind most dimension reduction methods is to preserve
the original high-dimensional relationships as much as possible in a
lower-dimensional space. For example, PCA achieves this goal by
maximizing the variance of the data in a low-dimensional space, and
MDS tries to approximate all given pairwise similarity/distance values.

In many cases, however, additional information is available about
the high-dimensional data. One of such additional information is
class labels of the individual data points, indicating pre-given group-
ings of data. Unlike the previous unsupervised methods, which use
only high-dimensional data as input, another type of methods called
supervised dimension reduction utilizes such pre-given class labels
when reducing the dimensions. Supervised dimension reduction,
such as linear discriminant analysis (LDA) [3–5], has been success-
fully applied in numerous classification applications in machine
learning and data mining (e.g., facial recognition [6]), and visual
analytics [7,8]. Given these labels, supervised dimension reduction
generally enhances class separation in lower-dimensional
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representations of data. Unlike unsupervised methods such as PCA,
as shown in Fig. 1(a), supervised dimension reduction plays an
important role in visualization by highlighting the class structure of
data, as shown in Fig. 1(b). In this manner, supervised dimension
reduction effectively performs the first step in a well-known visual
information seeking mantra: Overview first, zoom and filter, then
details-on-demand [9] by producing a visual overview with the class
information highlighted.

Nonetheless, the two different criteria of separating classes and
preserving original high-dimensional relationships could conflict
with each other. For example, the widely used LDA aims at
maximizing inter-class distances while minimizing intra-class ones,
which could significantly distort the original relationships of the
high-dimensional data. Although this issue might not be important
in other applications such as classification, it could cause a problem
in visualization tasks. That is, together with an overview at a class
level, users would want the original relationships in data to be
faithfully represented in visualization.

To effectively handle this trade-off problem in visualization
applications, we propose a novel supervised dimension reduction
approach. Basically, our proposed method incorporates a concept
of intrinsic clusters, which takes into account natural groupings
inherent in the data, to dimension reduction. As opposed to the
classes that are externally formed by pre-given label information,
intrinsic clusters are computed by a clustering algorithm purely
based on the original high-dimensional relationships. Such intrin-
sic clusters provide a means to better preserve the original rela-
tionships in addition to the class separation capabilities available
in the existing supervised dimension reduction methods.

The proposed method contains two important characteristics.
First, we adaptively impose supervision on different classes depend-
ing on how clearly they are separated from the rest. In other words,
we impose strong supervision on poorly separated classes so that
they are visually distinct while imposing weak supervision on
already well separated ones. In this manner, unnecessary distortion
will be avoided. Second, we try to actively enhance the structure of
intrinsic clusters by highlighting the separation between them. As a
result, our method can properly capture original relationships while
maintaining class separation in visualization. To realize our approach,
we have chosen a state-of-the-art dimension reduction method,
t-distributed stochastic neighbor embedding (t-SNE) [10], which
has been applied successfully in various visualization applications,
and we have extended it to what we call doubly supervised t-SNE.

The contribution of our work is summarized as follows:

� We introduce a novel concept of double supervision on dimen-
sion reduction based on pre-given class information as well as
inherent clusters reflecting the natural groupings of data.

� We develop the formulation and algorithm of our novel
dimension reduction method, doubly supervised t-SNE, which

can separate pre-given classes as well as preserve the high-
dimensional structure of the data.

� We evaluate the proposed method on various real-world data
sets and demonstrate both quantitative and qualitative results.

The rest of the paper is organized as follows. Section 2 describes
prior work related to dimension reduction. Section 3 introduces a
widely used dimension reduction technique, t-SNE, as well as its
basic extensions to supervised t-SNE. Next, Section 4 discusses the
proposed methodology, and Section 5 presents our experiments.
Finally, Section 6 concludes the paper.

2. Related work

Many dimension reduction techniques have been proposed in the
past. The main goal of dimension reduction is to model high-
dimensional data in a low-dimensional space such that the original
information conveyed in a high-dimensional space is preserved as
much as possible. Dimension reduction techniques attempt to achieve
this goal by optimizing various objective and cost functions. For
example, MDS [2] minimizes the sum of squared errors in terms of
the pairwise distances of data items between high- and low-
dimensional spaces. Isomap [11] works similar to MDS except that it
uses geodesic pairwise distances approximated by the shortest path
distances on k-nearest neighbor graphs instead of Euclidean pairwise
distances of MDS. Another family of methods employs probabilistic
formulation and objective functions. For example, stochastic neighbor
embedding (SNE) [12] and t-distributed SNE (t-SNE) minimize the
Kullback–Leibler divergence, a commonly used difference measure in
probability, between the probability distributions derived from pair-
wise distance relationships in high- and low-dimensional spaces.
However, these methods do not directly consider the original data
grouping information, and thus they are called unsupervised methods.

Unlike the above-mentioned unsupervised methods, super-
vised methods (e.g., LDA [3]) assume that label information
indicating the class structure in the data is already given and try
to directly incorporate it into the dimension reduction process. In
visualization, this grouping information has been actively used in
various methods such as self-organizing maps (SOM) [13], where
data clusters are naturally revealed during the dimension reduc-
tion process. To highlight the pre-given class structure, most
supervised methods minimize distances within the same classes
while maximizing those between different classes. In other super-
vised methods, a simple supervised extension of unsupervised
methods via pre-given label information is to append the given
label information as an additional dimension to the original high-
dimensional representation of the data, which has been applied
previously in SOM [13]. However, since the label information is
generally represented as a numeric vector, if the scale of this label

Fig. 1. Comparison of 2D visualization of Medline data described in Section 5.1. (a) Principal component analysis (PCA); (b) Linear discriminant analysis (LDA).
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vector is too large compared to the scale of other data features, the
low-dimensional structure could be dominated by the label infor-
mation alone. On the other hand, if the scale of the label is too
small, the label information is mostly ignored in the low-
dimensional representation. In addition, even though the original
class structure is not ordered, a numeric representation of the label
information inevitably conveys ordered relationships between the
classes (e.g., class 1 is considered to be closer to class 2 than to class
10). Thus, such an extension that treats the label information as just
another feature could significantly distort the topology of the
original relationships.

Other techniques modify the distance metrics to take advantage
of the class information. For example, Fisher SOM [14] applies the
Fisher information metric to SOM [13]. The Fisher information metric
considers two data points that have similar class probability dis-
tribution close to each other. Recently, the Fisher information metric
has been widely adopted by many supervised dimension reduction
approaches such as supervised neighbor retrieval visualizer (S-NeRV)
[15], discriminative t-SNE [16], and Fisher kernel t-SNE [17]. However,
the Fisher information metric has several drawbacks. That is, to
estimate class probability density, it requires an additional assump-
tion such as a unimodal Gaussian distribution per class, which may
not be the case in many complex real-world data sets.

Another set of approaches based on simple, intuitive transfor-
mations on the distance metric has also been proposed. One of the
most straightforward methods performs distance scaling among
data points belonging to the same class by a fixed ratio [18]. In
other words, within-class distances are linearly decreased so that
each class is represented more compactly. While this method
generally produces visualization with well-separated classes, it can
potentially cause excessive distortion of the original data relation-
ships. Another distance transformation [19] that has been applied
in Isomap takes a more sophisticated approach for better class
separation. This approach does not allow any pairwise distances
between different classes to be closer than those within the same
class while restricting the latter to always be smaller than a pre-
specified value. In this manner, the classes in the low-dimensional
representation are often overly separated even when the two
classes are significantly overlapped in the original space. In this
case, the method fails to convey original relationship information
other than class information. In addition, these two methods apply
the same supervision to all classes. That is, they decrease intra-
class distances in the same manner, ignoring the characteristics of
each class (e.g., whether a class is well separated from the others
or not). On the other hand, our method allows users to obtain a
low-dimensional mapping that adaptively imposes supervision on
different classes.

In the following, we propose a supervised dimension reduction
approach called doubly supervised dimension reduction, which
seeks a low-dimensional representation that preserves dissimila-
rities between data item pairs and maintains class separability for
effective visual analysis by utilizing pre-given class labels as well
as intrinsic clusters.

3. t-distributed stochastic neighbor embedding

In this section, we briefly describe t-distributed stochastic
neighbor embedding (t-SNE). Afterwards, we propose two basic
supervised versions of t-SNE by manipulating the input distance
based on the class labels.

3.1. t-distributed stochastic neighbor embedding (t-SNE)

t-distributed stochastic neighbor embedding (t-SNE) [10] is one of
the most popular dimensionality reduction techniques in visualization

applications. t-SNE extends the main idea of stochastic neighbor
embedding (SNE) in which a pairwise similarity/distance value is
converted into the probability with which a particular data point will
choose another data point as its neighbor. That is, a closely related
point is more likely to be chosen than a remotely related one.
Considering the two different probability distributions, one of which
is derived from the original high-dimensional space and the other
from the low-dimensional space, both SNE and t-SNE aim at mini-
mizing the difference between the two distributions, formulated as
the Kullback–Leibler divergence, a commonly adopted difference
measure for probability distributions. The main difference between
t-SNE and SNE is that t-SNE uses a student t-distribution for the low-
dimensional space and a Gaussian distribution for the high-
dimensional space while SNE uses Gaussian distributions for both
spaces. Additionally, for simpler and faster computation of gradients,
t-SNE uses joint probability distributions instead of conditional
probability distributions, which is adopted in SNE.

Given high-dimensional data points xiARn for i¼ 1;…;N, let us
define dðxi; xjÞ as the Euclidean distance between the two data
points. We calculate the joint probability pij in the high-dimensional
space as symmetrized conditional probability pij ¼ 1

2 ðpijjþpjjiÞ,
where pijj is defined by

pijj≔
expð�d2ðxi; xjÞ=2σ2Þ

∑ra sexpð�d2ðxr ; xsÞ=2σ2Þ
; ð1Þ

which is based on a Gaussian distribution with a variance σ. Let us
denote yiARd as the low-dimensional coordinate of xi after dimen-
sion reduction is performed, where d is typically set to 2 or 3 in
visualization applications. The joint probability qij for the low-
dimensional space is defined by

qij≔
ð1þd2ðyi; yjÞÞ�1

∑ra sð1þd2ðyr ; ysÞÞ�1
;

which is based on a student t-distribution with one degree of
freedom.

The goal of t-SNE is to find a low-dimensional embedding yi
that minimizes the difference between high-dimensional prob-
ability distribution pij and low-dimensional probability one qij.
This is achieved by minimizing the Kullback–Leibler divergence
between them, which is defined by

KLðP JQ Þ≔∑
i
∑
j
pij log

pij
qij
: ð2Þ

The minimization of Eq. (2) is done via a gradient descent method,
where the gradient of Eq. (2) with respect to yi is given by

∂
∂yi

KLðP JQ Þ ¼ 4∑
j
ðpij�qijÞðyi�yjÞð1þd2ðyi; yjÞÞ�1: ð3Þ

The gradient can be understood as the sum of forces between item i
and its neighbor j. Term pij acts as a pulling force put on yi towards
yj, and term qij acts as a pushing force put on yi away from yj. When
the low-dimensional distance between the two items is too large
(or too small) compared to their corresponding high-dimensional
distance, the pulling force becomes greater than (or less than) the
pushing force in the low-dimensional embedding process. Thus, the
forces serve the purpose of decreasing the mismatch between the
probabilities. Starting with a random initialization on yi's, t-SNE
iteratively updates them based on Eq. (3).

The main advantage of t-SNE for visualization is due to the
heavy-tailed characteristic of a student t-distribution for the low-
dimensional space, which plays a role of alleviating the crowding
problem: there is not enough room in the low-dimensional space
for embedding all the neighbors in the high-dimensional space.
Since moderately distant pairs of data items can be flexibly
mapped with relatively large distances in the low-dimensional
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space, t-SNE can model distances between closely related data
points more accurately than SNE and other dimension reduction
methods.

3.2. Linearly supervised distance transformation extension to t-SNE
(LS t-SNE)

In many cases, visualization tasks come with auxiliary class
label information. This additional information can be utilized in
dimensionality reduction so that the class structure can be high-
lighted. In the following, we propose two supervised extensions to
t-SNE. The main idea behind our supervised extension is to
transform the input distances based on the class label information.
To this end, we utilize a linearly supervised distance transforma-
tion (LS t-SNE). LS t-SNE scales the original distance between a
point and its neighbor that belongs to the same class by a factor of
λLS , where λLSo1, which will then be used as an input to t-SNE.
Previously, this linear-shrinking approach has been applied to
other dimension reduction methods [18]. This approach is simple
and easy to understand since it uses weighted distances to super-
vise dimension reduction. In the following, we describe this
extension to t-SNE, namely LS t-SNE, which employs this scaling
process.

Given a high-dimensional data point xiARn and its neighbor
xjARn along with their (pre-given) class labels li

g and lj
g, respec-

tively, their linearly scaled distance dLSðxi; xjÞ with a scaling para-
meter λLS is calculated as

dLSðxi; xjÞ≔
λLSdðxi; xjÞ if lgi ¼ lgj
dðxi; xjÞ otherwise

:

(
ð4Þ

This transformation shrinks intra-class distances while keeping
inter-class distances unchanged. We use such weighted distances
to calculate the probability distribution for the original high-
dimensional space, pijj, by replacing dðxi; xjÞ with dLSðxi; xjÞ in
Eq. (1). The rest of the process is the same as t-SNE. One of the
major limitations of this weighted approach is that every intra-
class pair is scaled to the same degree, ignoring the structure and
the distribution of each class. For instance, insufficiently separated
classes may need more supervision than already well separated
classes.

3.3. Exponentially supervised distance transformation extension to
t-SNE (ES t-SNE)

We propose another supervised distance transformation tech-
nique, namely exponentially supervised distance transformation
(ES). ES t-SNE, similar to the linearly supervised approach in the
sense that both decrease the inner-class distances, uses an
exponential transformation instead of linear scaling.

Given high-dimensional data point xiARn and its neighbor
xjARn along with their (pre-given) class labels li

g and lj
g, respec-

tively, the exponentially transformed distance dESðxi; xjÞ is com-
puted as

dESðxi; xjÞ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�expð�d2ðxi; xjÞ=βESÞ

q
if lgi ¼ lgjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

expðd2ðxi; xjÞ=βESÞ
q

�αES otherwise
;

8><
>: ð5Þ

where αES and βES are supervision parameters. This transformation
was originally introduced in [19], which proposed a supervised
version of Isomap [20]. According to [19], αES should be less than
0.65 to keep the transformed inter-class distances bigger than
those of intra-class distances that originally have the same high-
dimensional distance values. Usually, βES is set as the average
pairwise Euclidean distance in the original high-dimensional
space. This transformation has the following properties. First,

intra-class distances have an upper bound of 1 while inter-class
distances have a lower bound of 1�αES . Second, as the original
high-dimensional distances increase, their transformed inter-class
distances increase rapidly while their transformed intra-class
distances converge asymptotically to 1.

We extend t-SNE with this distance transformation scheme. In
Eq. (1), we replace dðxi; xjÞ with dES(xi, xj) and then follow the rest
of the procedure in t-SNE. The main drawback of this metric is that
it imposes strong separation between classes regardless of their
original relationships. In other words, it makes already large inter-
class distances transformed to excessively large distances because
of the second property (i.e., rapidly increasing inter-class dis-
tances), which would result in unnecessary distortion of the
original relationships in the final results of t-SNE.

4. Doubly supervised t-distributed stochastic neighbor
embedding (DS t-SNE)

In this section, we propose a novel supervised dimension
reduction method by introducing the concept of intrinsic clusters,
which represent natural groupings within the original high-
dimensional data. As opposed to pre-given class labels, which do
not necessarily reflect original relationships, intrinsic clusters
provide a way of better capturing original relationships, still under
a supervised dimension reduction setting. By simultaneously
incorporating both kinds of supervision based on pre-given classes
and intrinsic clusters, we propose the idea of doubly supervised
dimension reduction and extend t-SNE based on this idea.

4.1. Intrinsic clusters

We define the concept of intrinsic clusters as natural groupings
inherent in an original high-dimensional space. In order to
compute intrinsic clusters, we apply clustering techniques such
as k-means to original high-dimensional data. In doubly super-
vised dimension reduction we propose in this paper, the grouping
information of intrinsic clusters works as another set of labels in
addition to pre-given class labels so that original relationships at
an intrinsic cluster level can be highlighted.

In general, clustering high-dimensional data is a challenging
problem due to the curse of dimensionality [21]. Therefore, in
many cases, choosing a clustering method and its parameters (e.g.,
the number of clusters) that are the most suitable for our data at
hand is still an open question. To properly obtain the intrinsic
clusters, we use k-means with the number of intrinsic clusters, K,
chosen as follows: We set the value of K in the range from half the
number of pre-given classes, ⌊M=2c, to 2 M, where M is the
number of pre-given classes, and for each K, we run k-means five
times and choose the best result with the smallest objective
function value. We then measure the quality of the clustering
results for a different value of K by computing the Davies–Bouldin
index [22] and choose the one with the best quality measure, as
will be shown later in Section 5.1.

4.2. Adaptive supervision by pre-given class labels

Most existing supervised dimension reduction methods impose
supervision on different classes in the same manner, regardless of
whether they are well separated or not. On the other hand, our
method aims to adaptively put stronger supervision on poorly
separated classes than on those classes that are well separated. For
this purpose, let us first denote the pre-given class label and the
intrinsic cluster label of xi as lig and li

c, respectively. Given M classes
and K intrinsic clusters, we construct a class-by-cluster confusion
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matrix CARM�K , of which the (m,k)-th element cmk is defined as

cmk≔cardfxi : lgi ¼m; lci ¼ kg;
where card(A) denotes the cardinality of set A. That is, cmk

represents the number of data points that belong to the m-th
pre-given class and the k-th intrinsic cluster.

Now, we want to supervise classes proportional to the degree
of impurity for each class. In other words, the case in which a class
is distributed over many intrinsic clusters indicates that the data
points in this class are poorly separated, and thus it requires
stronger supervision. On the other hand, the other case in which a
class is distributed over a small number of intrinsic clusters
indicates that the class is coherent and/or compact. To formulate
this idea, we first adopt an impurity measure of a particular class
as the entropy of the data distribution of the class over intrinsic
clusters. The entropy of the m-th class, HðmÞ, is expressed as

HðmÞ≔�∑
k

cmk

∑k0cmk0
log

cmk

∑k0cmk0
:

By utilizing this impurity measure, we modify the joint probability
distribution generated from the original high-dimensional rela-
tionships, pij, in Eq. (1) and define a new joint probability
distribution p̂ij as

p̂ij≔
αDS expðHðmÞÞpij if lgi ¼ lgj
pij otherwise

;

(
ð6Þ

where αDS is a scaling parameter. Basically, this equation plays a
role of increasing intra-class probabilities corresponding to those
classes with high impurity measures. We introduce the additional
parameter αDS to control the degree of this adaptive supervision
relative to the degree of the secondary supervision that will be
described in Section 4.3. As shown in Fig. 2, class separation is
highlighted for a large value of αDS. After this step, p̂ij is normal-
ized to sum to 1.

4.3. Secondary supervision by intrinsic clusters

Supervision based on pre-given class labels may distort the
original structure embedded in a low-dimensional space. Thus, to
mitigate this distortion, we present a secondary supervision step
using intrinsic clusters. Similar to the supervision on pre-given
classes described in Section 4.2, we perform the secondary super-
vision on intrinsic clusters by increasing the probability values
corresponding to pairwise relationships within each intrinsic
cluster (i.e., the intra-cluster probability).

Given probability p̂ij obtained from Eq. (6), we perform secondary
supervision on intrinsic clusters and generate a new probability value
~pij as

~pij≔
ð1�βDS1Þp̂ij þβDS1 if lci ¼ lcj
γDSp̂ij otherwise

;

(
ð7Þ

where βDS1≔ΔDS=∑lci ¼ lcj
ð1� p̂ij Þ, γDS≔1�ΔDS=∑lci a lcj

p̂ij , and ΔDS is
the total probability mass added to the intra-cluster probabilities (out
of the inter-cluster probabilities). Note that the inter-cluster prob-
abilities are scaled by a factor γDSo1. It can be shown that the
modified probability ~pij satisfy the following equations:

∑
lci ¼ lcj

~pij ¼ ∑
lci ¼ lcj

p̂ij þΔDS; ∑
lci a lcj

~pij ¼ ∑
lci a lcj

p̂ij �ΔDS: ð8Þ

Thus, the maximum value that ΔDS can have is computed as
∑lci a lcj

p̂ij , which is the sum of inter-cluster probabilities. As
shown in Fig. 3, the grouping of intrinsic clusters (e.g., the
ellipses on Fig. 3(b)) becomes clearer as ΔDS, which corresponds
to the degree of supervision on intrinsic clusters, increases. For
example, in Fig. 3(a), data points in the top-left corner are
initially visualized as a single cluster, but as ΔDS increases, they
are divided into two sub-clusters in Fig. 3(c), highlighting
intrinsic clusters in visualization.

Alternatively, one can use another approach that defines the
probability ~pij as

~pij≔
βDS2p̂ij if lci ¼ lcj
γDSp̂ij otherwise

;

(
ð9Þ

where βDS2≔1þΔDS=∑lci ¼ lcj
p̂ij ; γDS≔1�ΔDS=∑lci a lcj

p̂ij . In this case,
Eq. (8) still holds. The two approaches differ in terms of how to
allocate the total probability transferred from inter-cluster rela-
tionships to intra-cluster relationships. The first approach guaran-
tees that any intra-cluster probability is equal to or greater than
βDS1 as can be seen from Eq. (7), which would boost small intra-
cluster probabilities to at least βDS1. However, the second approach
increases intra-cluster probabilities just linearly by a factor of βDS2
(Eq. (9)), which gives no such guarantees. Thus, a small intra-
cluster probability may still remain relatively small even after the
supervision.

4.4. Parameter selection

Our method has two key parameters, αDS and ΔDS, which control
the degrees of supervision on pre-given classes and intrinsic clusters,
respectively. By default, we set αDS to 1 and ΔDS to 0.1. When αDS ¼ 1,
we impose no supervision on the pre-given class that belongs
entirely to a single intrinsic cluster (i.e., p̂ij ¼ pij in Eq. (6)). By having
ΔDS ¼ 0:1, our method transfers the probability mass of 0.1 from the
inter- to intra-cluster relationships.

In visualization, it is relatively less important to find the best
parameter value than in other applications since users can change
parameter values and check visualized results in an iterative and
interactive manner [23]. Other applications such as prediction
tasks often seek to find the best parameter values as the nature of
the task is to find the most accurate model that best performs on
unseen data rather than to try multiple parameter values inter-
actively. In visual analysis tasks, the capability of easily changing

Fig. 2. Effect of αDB on the 2D visualization of Isolet data described in Section 5.1. (a) αDB ¼ 0:5; (b) αDB ¼ 1; (c) αDB ¼ 2.
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parameters is more important in understanding various aspects of
data from interactive visualization. Although not shown in this
paper, we have developed a graphical user interface with which
one can easily try out different parameter values. The visualization
examples and the quantitative analysis shown in Section 5 are
based on such processes.

4.5. Computational cost

DS t-SNE has three additional steps, (1) k-means clustering,
(2) supervision on pre-given classes, and (3) supervision on
intrinsic clusters, followed by the main dimension reduction
step, which is the same as the original t-SNE. The original
t-SNE has the computational complexity of OðN2dÞ, where N is
the total number of data items, and d is the reduced dimension.
Among the three additional steps of DS t-SNE, a nontrivial
amount of computations can take place in the k-means clustering
step, which increases linearly in terms of both N and n, where n is
the original dimension. This mainly happens when n is signifi-
cantly larger than N. In this case, one can pre-reduce the original
dimension to a reasonable number by applying a computationally
efficient method such as PCA beforehand. In fact, this process is
already included as part of the original implementation of t-SNE
to efficiently compute all the pairwise distances dðxi; xjÞ's in the
original high-dimensional space in an approximate manner. By
applying the same process before the k-means clustering step,
the computational cost of this step becomes much smaller than
the subsequent steps of the original t-SNE computation. Hence,
DS t-SNE can be considered to have the equivalent computational
complexity to that of t-SNE, i.e., OðN2dÞ.

5. Experiments

To evaluate DS t-SNE, we compare it with other state-of-the-
art methods such as t-SNE, LS t-SNE (Section 3.2), ES t-SNE
(Section 3.3), LDA [3], and S-NeRV [15]. We first describe the data
sets used in this paper as well as our experimental setup in
Section 5.1. The quantitative results of our experiments are
shown in Section 5.2. Finally, Section 5.3 analyze visualized
results in depth.

5.1. Data sets and experimental setup

We used the following eight data sets: (1) Image Segmentation
data set [24] (2310 data points, 19 dimensions, 7 classes), (2) Isolet
data set [24] (1558 data points, 617 dimensions, 26 classes),
(3) Libras Movement data set [24] (360 data points, 90 dimensions,
15 classes), (4) Medline data set1 (550 data points, 22,095

dimensions, 5 classes), (5) MNIST data set2 (5000 data points,
784 dimensions, 10 classes), (6) 20 Newsgroup data set3 (770 data
points, 16,702 dimensions, 11 classes), (7) Optical Recognition of
Handwritten Digits data set [24] (5000 data points, 64 dimensions,
10 classes), and (8) Reuter data set4 (880 data points, 3907 dime-
nsions, 10 classes).

In the following experiments, the parameter αDB (in Eq. (6)) is set
to 1, and the parameter ΔDS (in Eq. (8)) is chosen in the range of
[0, 0.5] in DS t-SNE. The optimal number of intrinsic clusters
determined based on the mean Davies-Bouldin index for each data
set is shown in Table 1. In LS t-SNE, we tested the parameter λLS (in
Eq. (4)) in the range of [0.1, 0.9]. In ES t-SNE, we tested the parameter
αES (in Eq. (5)) in the range of [�0.15, 0.65], and the parameter βES (in
Eq. (5)) is set to the mean of all the pairwise Euclidean distances,
unless mentioned otherwise. For other t-SNE parameters such as
perplexity, momentum, and the number of iterations, we followed
the default values suggested in [10]. In S-NeRV, we set λ to 0.1 and 0.3,
following the original S-NeRV paper [15]. In all methods, we chose the
parameters producing the best mean reciprocal rank and mean
precision measures, which are described in Section 5.2.

5.2. Quantitative results

In this section, we evaluate the performance of our method and
compare it with other methods based on various quantitative
measures. We employ four different measures to capture the
diverse characteristics of the results: (1) the mean precision,
(2) the mean reciprocal rank, (3) the rank correlation, and
(4) the k-NN classification accuracy. The first three are the
measures to assess the preservation of the original high-dime-
nsional relationships, and the last measure is about the preserva-
tion of the pre-given class structure in terms of classification
accuracy. Among the three measures about the original relation-
ships, the mean precision and the mean reciprocal rank evaluate
local structure preservation while the rank correlation evaluates
global structure preservation.

The mean precision is defined as

PR¼ 1
N

∑
N

i ¼ 1

cardfjAPi \ Qi; ia jg
cardfjAQi; ia jg ;

where N is the total number of data items, Pi (or Qi) is the index set of
the neighborhood data points of data item i in the original high-
dimensional space (or in the low-dimensional space), which consists
of a fixed number of the nearest neighbors to data item i, and card(A)
is the cardinality of set A. As described in [15], we consider the 20
nearest neighbors of a data point as its relevant items.

Fig. 3. Effect of ΔDS on 2D visualization of Libras Movement data described in Section 5.1. (a) ΔDS ¼ 0:1; (b) ΔDS ¼ 0:15; (c) ΔDS ¼ 0:2.

1 http://www.cc.gatech.edu/�hpark/othersoftware_data.php

2 http://yann.lecun.com/exdb/mnist/index.html.
3 http://qwone.com/� jason/20Newsgroups/
4 http://www.cc.gatech.edu/�hpark/othersoftware_data.php
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The mean reciprocal rank [25], which is a well-known informa-
tion retrieval metric to evaluate top-k retrieved is computed as the
reciprocal value of the harmonic mean of the ranks of the original
k nearest neighbors of a data item in the low-dimensional space in

terms of their distances from the item, which is defined as

Mean Reciprocal Rank¼ 1
N
∑
i

1
k

∑
xj AN x

kðxiÞ

1
rankiðyjÞ

 !
;

where N is the total number of data items, and N x
kðxiÞ is the set of

the k nearest neighbors of xi (with k¼5), and rankiðyjÞ is the

Table 1
Number of intrinsic clusters (K) and mean Davies–Bouldin index (DB) for each data set.

Image Segmentation Isolet Libras movement Medline MNIST 20 News-group Handwritten digits Reuter

K 3 16 23 9 20 22 9 18
DB 0.76 2.28 1.20 7.11 2.61 2.31 1.78 4.04

0.7 0.8 0.9 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5
t−SNE
LS
ES
LDA
S−NeRV
DS

0.5 0.6 0.7 0.8 0.9 1
0

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4

0.4 0.6 0.8 1
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4 0.5 0.6 0.7 0.8 0.9 1
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.6 0.7 0.8 0.9 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fig. 4. k-NN classification accuracy (horizontal axis) – mean reciprocal rank (vertical axis) plotted for all data sets. The curves are parametrized by the supervision level of
corresponding methods. (a) Image Segmentation data set; (b) Isolet data set; (c) Libras Movement data set; (d) Medline data set; (e) MNIST data set; (f) 20 Newsgroup data
set; (g) Handwritten Digits data set; (h) Reuters data set.

Table 2
Comparison results of mean precision values. A higher value indicates better
performance.

Data set t-SNE LS t-SNE ES t-SNE LDA S-NeRV DS t-SNE

Image Segmentation 0.7389 0.7056 0.6981 0.3359 0.6932 0.7364
Isolet 0.5688 0.5374 0.4437 0.1573 0.1647 0.5401
Libras Movement 0.6976 0.5143 0.4058 0.2624 0.4325 0.5667
Medline 0.3684 0.3185 0.3165 0.1379 0.1220 0.2813
MNIST 0.4693 0.4311 0.3137 0.1490 0.1238 0.4212
20 Newsgroup 0.2044 0.1387 0.1458 0.0398 0.0927 0.1374
Handwritten Digits 0.4957 0.4948 0.4919 0.2961 0.1819 0.4976
Reuters 0.4073 0.3777 0.3490 0.2277 0.2513 0.3962

Table 3
Comparison results of mean reciprocal rank values. A higher value indicates better
performance.

Data set t-SNE LS t-SNE ES t-SNE LDA S-NeRV DS t-SNE

Image Segmentation 0.4221 0.4147 0.4121 0.1993 0.3446 0.4203
Isolet 0.3605 0.2531 0.2433 0.0456 0.0578 0.3431
Libras Movement 0.4005 0.3597 0.3469 0.1294 0.2137 0.3794
Medline 0.3266 0.2587 0.2585 0.0520 0.0404 0.2806
MNIST 0.3234 0.2910 0.1894 0.0694 0.0473 0.3076
20 Newsgroup 0.1475 0.0752 0.0717 0.0217 0.0283 0.1340
Handwritten Digits 0.3142 0.3031 0.3103 0.1464 0.0666 0.3045
Reuters 0.3468 0.2289 0.2339 0.1616 0.1383 0.3130

Table 4
Comparison results of distance rank correlation values. A higher value mean
stronger correlation.

Data set t-SNE LS t-SNE ES t-SNE LDA S-NeRV DS t-SNE

Image Segmentation 0.1685 0.2043 0.1164 0.4841 0.6498 0.1805
Isolet 0.6067 0.1425 0.1202 0.6403 0.0698 0.3453
Libras Movement 0.4366 0.3333 0.2641 0.3498 0.4995 0.2680
Medline 0.2397 0.2497 0.2416 0.3568 0.2193 0.2244
MNIST 0.3703 0.1072 0.1233 0.4713 0.4056 0.1122
20 Newsgroup 0.5062 0.0753 0.0681 0.0917 0.2459 0.2664
Handwritten Digits 0.2153 0.2104 0.2057 0.6375 0.0874 0.1745
Reuters 0.1706 0.3217 0.3135 0.4166 0.3090 0.1718

Table 5
Comparison results of k-NN classification accuracy values. A higher value indicates
better performance.

Data set t-SNE LS t-SNE ES t-SNE LDA S-NeRV DS t-SNE

Image Segmentation 0.9364 0.9970 1.0000 0.9623 0.8762 0.9481
Isolet 0.7766 1.0000 1.0000 0.6470 0.5616 0.9185
Libras Movement 0.7861 0.9889 1.0000 0.6250 0.7056 0.9500
Medline 0.7620 1.0000 1.0000 0.9920 0.6440 0.8620
MNIST 0.9356 1.0000 0.9998 0.9284 0.7597 0.9784
20 Newsgroup 0.3948 1.0000 1.0000 0.9987 0.5000 0.8338
Handwritten Digits 0.9864 0.9996 0.9998 0.9766 0.6170 0.9878
Reuters 0.5838 0.9988 1.0000 0.6575 0.6838 0.7800
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distance rank of data item j from data item i in the low-dimensional
space. This measure indicates how closely the original k nearest
neighbors are placed in the low-dimensional space.

The rank correlation computes Spearman's rank correlation
coefficient ρ, which captures a monotonic association between
two variables [26]. In this paper, we compute this measure by
comparing the distance ranks from a data point to the other points

in the original space with those in the embedded space. Unlike the
previously mentioned measures based only on local neighbors, the
rank correlation measure evaluates the preservation of a global
structure by considering the entire data relationships.

The k-NN classification accuracy is computed as the prediction
accuracy of class labels by performing k-NN classification in the
low-dimensional space. That is, we compare the pre-given class

Fig. 5. Comparison of 2D visualizations of 20 Newsgroup data using different algorithms. (a) t-SNE; (b) LS t-SNE; (c) ES t-SNE; (d) LDA; (e) S-NeRV; (f) DS t-SNE.

Fig. 6. Comparison of 2D visualizations of Reuters data using different algorithms. (a) t-SNE; (b) LS t-SNE; (c) ES t-SNE; (d) LDA; (e) S-NeRV; (f) DS t-SNE.
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information of a data point and its k-nearest neighbor classifier
output (k¼5) in the low-dimensional space. This metric was
previously used in the evaluation of S-NeRV [15].

The quantitative results are shown in Tables 2–5 as well as in
Fig. 4. Tables 2 and 3 show the results of the mean precision and
the mean reciprocal rank, respectively. These two measures
indicate how well the original neighborhood structures in the
high-dimensional space are preserved (regardless of class labels).
In both sets of the results, t-SNE, the only unsupervised method

among the compared methods, shows the highest performances
for all the five data sets. This is expected since the supervised
dimension reduction methods generally introduce the distortion
of the given original relationships in return for enhanced class
separability. Except for t-SNE, however, DS t-SNE is shown to
perform the best for most of the data sets and shows the
comparable performances to t-SNE (e.g., Medline, MNIST, and 20
Newsgroup data sets in Table 2 and Handwritten Digits data set in
Table 3). Table 4 shows the Spearman's rank correlation

Fig. 7. Comparison of 2D visualizations of Isolet data using different algorithms. (a) t-SNE; (b) LS t-SNE; (c) ES t-SNE; (d) LDA; (e) S-NeRV; (f) DS t-SNE.

Fig. 8. Comparison of 2D visualizations of MNIST data using different algorithms. (a) t-SNE; (b) LS t-SNE; (c) ES t-SNE; (d) LDA; (e) S-NeRV; (f) DS t-SNE.
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coefficients which evaluate the preservation of the global structure
in the original high-dimensional space. Interestingly, DS t-SNE and
the other t-SNE based methods are outperformed by LDA and
S-NeRV in terms of global relationship preservation for most data
sets. This is because the methods based on t-SNE, which adopts
Student's t-distribution, emphasize local structure. However, users
are usually more interested in the preservation of local relation-
ships rather than the preservation of global relationships, and thus
DS t-SNE can be viewed as one of the most competitive methods
in terms of the original relationship preservation among the
compared supervised methods.

Table 5 shows the classification accuracy results, which indicate
how well the classes are separated from each other. LS t-SNE and
ES t-SNE show almost perfect accuracy values for all the data sets.
This is mainly because of severe class separation imposed by the
dimension reduction methods, as seen in Figs 5–8, 10, and 12.
When the classes are already well separated from each other in
the original space, such strong supervision would not introduce
much distortion. However, when the classes are not well separated
in the original space, class separation can bring unnecessarily
excessive distortion against the faithful representation of the
original relationships in visualization. On the other hand, DS t-
SNE does not only generate compelling visualization without such
excessive distortion, as seen in Figs 5–8, 10, and 12, but also shows
reasonably good classification accuracy ranging from .78 (Reuters)
to .99 (Handwritten Digits), as shown in Table 5.

In order to show the balance between original relationship
preservation and class separation, we plot the mean reciprocal rank
versus the k-NN classification accuracy by varying the parameters of
the compared methods, which are described in Section 5.2. A
different parameter value leads to a particular pair of the two
performance measures, the mean reciprocal rank and the k-NN
classification accuracy, and as we increase/decrease the parameter
value, we obtain a trajectory curve of these measure pairs. The
curve placed near the top right region indicates high performances
in terms of both measures. The result of this experiment is reported
in Fig. 4. This result shows that DS t-SNE and LS t-SNE generally
perform better than the other methods such as S-NeRV and LDA.
Compared to the naive way of supervision in LS t-SNE, however, our
carefully designed supervision performed in DS t-SNE leads to more
visually appealing results, as will be seen in the next section.

5.3. Visual analysis

Figs 5–8, 10, and 12 show our visualization results generated by
various methods. First of all, in most cases, our proposed method,
DS t-SNE, successfully shows both the class separation and the
original relationships by leveraging intrinsic clusters as well as
pre-given classes. In the case of text documents such as 20
Newsgroup and Reuters data sets (Figs. 5 and 6), an unsupervised
method, t-SNE, does not properly reveal the clear class structure,
partly because of the lack of coherence within each topic class,

Fig. 9. Individual raw data examples of the sub-clusters shown in Fig. 8(f) of MNIST data. Each written digit is represented in a white color in a black background. (a) A sub-
cluster in class ‘1’; (b) Another sub-cluster in class ‘1’.

Fig. 10. Comparison of 2D visualizations of Libras Movement data using different algorithms. (a) t-SNE; (b) LS t-SNE; (c) ES t-SNE; (d) LDA; (e) S-NeRV; (f) DS t-SNE.
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which is often the case in document data. This aspect is also
supported by our DB index results shown in Table 1. For instance,
Reuters data set have a high mean DB value of 4.0 (Table 1), and
although not shown here, two of its clusters have DB indices that
are higher than 6.6. As a result, the result of t-SNE shows cluttered
visualization without any distinguishable class structure. On the
other hand, its supervised versions, LS t-SNE and ES t-SNE, show
excessive separation between the classes, and thus fail to show the
original high-dimensional relationships among individual docu-
ments. However, DS t-SNE generates balanced visualization betw-
een these two aspects, which allows users to properly understand
the high-dimensional data structure.

Second, another major advantage of our method is the capability of
revealing sub-clusters in the data, e.g., data groups belonging to a
single class but distributed over multiple intrinsic clusters. For
instance, two groups of sub-clusters (ellipses in Fig. 7(f)) are noticeably
separated, while the corresponding classes in Fig. 7(a) are difficult to
distinguish. Likewise, our method clearly reveals sub-clusters in other

visualization examples. In Fig. 8, the orange-colored class does not
show its sub-clusters in Fig. 8(a)–(e), but our method reveals its two
groupings in Fig. 8(f). When we further examined the orange-colored
class, which represents the written digit ‘1’, these two sub-clusters
indeed have clear distinction as one is vertically written (Fig. 9(a)) and
the other is written with an angle (Fig. 9(b)).

Furthermore, we present an in-depth study on several data sets
as follows. Fig. 10 shows visual results from Libras Movement data
set, which is the Brazilian sign language data. In this data set, a
class represents a particular hand gesture or movement. The
visualization generated by DS t-SNE (Fig. 10(f)) reveals several
sub-clusters in some of the classes. After further examination of
the raw data, which correspond to movement trajectories, we
found significant differences between various sub-clusters, as
shown in Fig. 11. For example, Fig. 11(a, b) describes data points
from the same class, but clearly the angles of the movements are
shown to be different. Additionally, the samples shown in Fig. 11(c,
d) also share the same class label, but the trajectories in one

Fig. 11. Individual raw data examples of the sub-clusters in Fig. 10(f) of Libras Movement data. Each image illustrates hand movement traces, which start from a white color
and end at a black color. (a) A sub-cluster in the yellow-colored class; (b) Another sub-cluster in the yellow-colored class; (c) A sub-cluster in the pink-colored class;
(d) Another sub-cluster in the pink-colored class. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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sub-cluster start movement from the right side (Fig. 11(c)) while
those in another sub-cluster start from the bottom-left corner
(Fig. 11(d)).

Fig. 12 shows visualization results from Optical Recognition of
Handwritten Digits data set. In Fig. 12, the methods other than DS
t-SNE represent class ‘5’ (cyan-colored) as a single group, but our
method shows it as roughly two separate sub-clusters. Fig. 13 shows
individual raw data examples of the handwritten digit images
corresponding to these cyan-colored sub-clusters in Fig. 12(f). The
comparison between these examples from these sub-clusters indi-
cates that the two sub-clusters differ in how people write the
digit ‘5’, e.g., whether the shapes of the bottom part are written big
and round-shaped (Fig. 13(b)) or small and slim (Fig. 13(a)).

In many cases, LDA and S-NeRV fail to generate visually
pleasing results in terms of class separability as well as the general
point distribution in a 2D scatter plot. On the other hand, our
method presents visually favorable low-dimensional embedding
of data among the compared methods, facilitating both class-level
or item-level analyses.

6. Conclusion

In this paper, we proposed a novel concept of double supervision
in dimension reduction and presented its application to t-SNE, which

we call doubly supervised t-SNE. Our double supervision is imposed
on both the pre-given class information and the intrinsic clusters
reflecting the natural grouping of the data. We demonstrated the
advantage of the proposed method compared to other existing
methods using both quantitative and qualitative analyses. As future
work, we plan to apply our novel concept of double supervision to
other popular dimension reduction methods. Furthermore, we plan
to develop an interactive visualization system using the proposed
method for high-dimensional data analysis [27,28].
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