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= Understanding large-scale document collections is important

= [n many real world applications,
we often need to compare and document sets

= We may want to analyze w.r.t. additional information
= author information (e.g., gender, age, and location)
= network information (e.g., co-authorship and citation)

= publishing information (e.g., year, publisher, and venue)



Example (1)

*= E.g., Male- vs. female-authored documents
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Example (2)

* E.g., Old documents vs. new documents
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= However, standard topic modeling cannot fully satisfy the needs
to compare and contrast document sets

= Independently running standard NMF algorithms on different
document sets does not clearly reveal their common and
discriminative topics



Data mining papers published in vs. 2006-2008

Running topic modeling separately
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Are these “common topics” really common?




Data mining papers published in
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common topics and discriminative topics




Nonnegative Matrix Factorization (NMF) for Topic Modeling

X ~ WHT apple

term-document matrix(X) fruit
— term-topic matrix(W), orange
topic-document matrix(H")

= Each topic,
a honnegative vector of words (value: work

= Each document, a linear combination of topic vectors
= Algorithm

= |nitialize W, H

= Update W, H to optimize MI/I’lI}IZIOHX — WHT||%

Frank in the to®



Our Joint NMF-based Model

= GOAL: Given two
datasets, find common
topics and discriminative
topics from each dataset

= Formula
X, ~W,H{
XZ ~ WZHgJ

where W, . = W, .
and Wy g # W, 4

<
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Common topics
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Discriminative topics



Our Batch Processing Approach

X = WiHT || + 2. — woH

= Optimize min
W1,H1,W5,H20 +a”W1,C — WZ,CH BHWf:dWZ,d'

1.7

Distinctiveness
penalty term

= Block-coordinate descent framework:

= Solve the objective function for a column
while fixing the other column vectors of W, W,, H,, H,

11



Our Pseudo-deflation Approach

= |n practice, to understand topics, people check only a small
number of the most representative, thus meaningful keywords.

= Our pseudo-deflation approach considers only the top keywords
In each topic.

= However, considering only the top keywords presents a
challenge — the objective function could change every iteration.

= To solve this, our pseudo-deflation approach discovers
discriminative topics one by one, in a manner similar to a rank-
deflation procedure.

= Please see our paper for detailed algorithm (Section 3.4)
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Quantitative Evaluation - Clustering

= Assumption: by jointly performing clustering on multiple data sets and
allowing both common and discriminative topics, our method would
show better clustering performance

= Compared methods:
= Standard NMF
= Qur batch processing method (BS)
= Our pseudo-deflation method (PD)
= Multiview NMF (MV) by Liu et al. SDM ‘13
= Regularized shared subspace NMF (RS) by Gupta et al. DMKD 13

= Performance measures: accuracy, hormalized mutual information,
average cluster entropy, and cluster purity 13



Quantitative Evaluation
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Case Study (1) - VAST vs. InfoVis Conferences

Visual Analytics Science and Technology (VAST) Information Visualization
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Case Study (2) - Loan Description in Micro-finance

= \(IVH .org is a nonprofit crowd-funding
website where people in developing
countries post loan requests

= Lenders can make a loan individually or
as a team

= By analyzing loan description data, our
method can help to characterize and
promote lending activities

2 Aloan of $1,675 helps Miguel

@l Angel to diversify his business by
purchasin g 2 dalry cows. With the

m  ©xtra Income he will generate, he

will be able to continue

supporting his family and to

> provide an education for his

s children.

Update on Miguel Angel

Miguel Is a young man of 25 years of age. He lives with his wife and 4
children In a precinct called El Salto Del Bimbe, a very warm area with
a big logging Industry, and which Is part of the city of Santo Domingo.

Miguel leads a humble life. He lives In a wooden house which was
glven to him by his boss, as he works as caretaker of an estate.

Miguel's family Is a role model family, as they are all very close and
they all help each other regardless of thelr age; even the children help
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People tend to fund loans similar to what they like.



vs. ‘Greece’
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Construction and Industrial Manufacturing are big in Greece.




Lender Occupation

= Distinct topics of loans funded by a subset of lenders with the
same occupation against the rest

Art vs. non-art Driver vs. non-driver Teacher vs. non-teacher
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Conclusion

= We presented a joint NMF-based topic model that identifies
common and distinct topics between document sets

= We performed a detailed quantitative analysis as well as in-
depth case studies

= We plan to "y '
. . . . Than .
= Build a real-time visual analytics system Il el

= Extend to compare multiple subsets

= Apply block principal pivoting method hannahkim®gatech.edu




