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ABSTRACT

Understanding large-scale document collections in an efficient man-
ner is an important problem. Usually, document data are associ-
ated with other information (e.g., an author’s gender, age, and lo-
cation) and their links to other entities (e.g., co-authorship and ci-
tation networks). For the analysis of such data, we often have to re-
veal common as well as discriminative characteristics of documents
with respect to their associated information, e.g., male- vs. female-
authored documents, old vs. new documents, etc. To address such
needs, this paper presents a novel topic modeling method based on
joint nonnegative matrix factorization, which simultaneously dis-
covers common as well as discriminative topics given multiple doc-
ument sets. Our approach is based on a block-coordinate descent
framework and is capable of utilizing only the most representative,
thus meaningful, keywords in each topic through a novel pseudo-
deflation approach. We perform both quantitative and qualitative
evaluations using synthetic as well as real-world document data
sets such as research paper collections and nonprofit micro-finance
data. We show our method has a great potential for providing in-
depth analyses by clearly identifying common and discriminative
topics among multiple document sets.

Categories and Subject Descriptors

H.2.8 [Database Management]: Database Applications- Data Min-
ing; I.2.6 [Artificial Intelligence]: Learning

General Terms

Algorithms, Design, Performance
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1. INTRODUCTION
Topic modeling provides important insights from a large-scale

document corpus [5, 16]. However, standard topic modeling does
not fully serve the needs arising from many complex real-world
applications, where we need to compare and contrast multiple doc-
ument sets. For instance, such document sets can be generated as
subsets of an entire data set by filtering based on their additional
information, such as an author’s gender, age, location, and relation-
ships among these entities such as co-authorship and citation net-
works. Analyses on multiple document sets can provide interest-
ing insights, especially when we can reveal the common or distinct
characteristics among them. Another important application is time-
evolving document analysis. Given recently published papers, it is
often important to understand the currently emerging/diminishing
research areas (distinct topics) and the research areas consistently
studied over time (common topics).

For example, Fig. 1 shows the common topics and distinct topics
between the research paper data sets from two different disciplines,
namely, information retrieval and machine learning, produced by
running the method proposed in this paper. A common topic be-
tween the two turns out to be language modeling based on a prob-
abilistic framework such as hidden Markov models (Fig. 1(a)). On
the other hand, information retrieval predominantly studies the top-
ics about query expansion, database, and xml formats and the topics
about the semantic web (Fig. 1(b)), while machine learning studies
Bayesian approaches, neural networks, reinforcement learning, and
multi-agent systems (Fig. 1(c)).

As another example, Fig. 2 shows the common topics and dis-
tinct topics among papers in the data mining area published in
2000-2005 and those published in 2006-2008, generated by our
method. One can see that clustering and outlier/anomaly detec-
tion have been consistently studied over time (Fig. 2(a)). On the
other hand, large-scale data mining and social network analysis
have been recently emerging (Fig. 2(b)) while association rule min-
ing and frequent pattern mining have received less attention during
the later years (Fig. 2(c)).

We propose a novel topic modeling method that simultaneously
discovers common topics and distinct topics out of multiple data
sets, based on joint nonnegative matrix factorization (NMF). For
simplicity, we focus on the case of two data sets. Nonnegative ma-
trix factorization [23] has been widely used in document clustering
and topic modeling [2, 3, 28, 30]. Our joint NMF-based topic mod-
eling approach aims at simultaneously revealing common as well
as distinct topics between two document sets, as shown in the pre-



(a) A common topic (b) Distinct topics for IR (c) Distinct topics for ML

Figure 1: The topic summaries of the research papers in information retrieval (IR) vs. those in machine learning (ML) disciplines.

(a) Common topics (b) Distinct topics for years 2006-2008 (c) Distinct topics for years 2000-2005

Figure 2: The topic summaries of the research papers in the data mining area published in 2000-2005 vs. those published in 2006-2008.

vious examples. We introduce two additional penalty terms into
the objective function for joint NMF so that common topics can be
as similar as possible between two data sets while the rest of the
topics can be as different as possible. We also propose an approach
where the dissimilarities among topics are defined only with the
most representative keywords and show its advantages.

The main contributions of this paper are summarized as follows:

• We develop a joint NMF-based topic modeling method that
simultaneously identifies common and distinct topics among
multiple data sets.

• We perform a quantitative analysis using both synthetic and
real-world document data sets, which shows the superiority
of the proposed method.

• We show in-depth studies on various real-world document
data sets including research paper collections as well as non-
profit micro-finance/crowdfunding applications (available in
Kiva.org).

The rest of this paper is organized as follows. Section 2 discusses
related work. Section 3 describes the problem formulation and our
proposed NMF methods that incorporate commonality and distinc-
tiveness penalty terms in the object function. Section 4 shows de-
tailed quantitative results on both synthetic and real-world data sets.
Section 5 presents the case studies of the proposed methods. Fi-
nally, Section 6 concludes our discussion.

2. RELATED WORK
There have been previous studies for simultaneously factorizing

multiple data sets using NMF. Badea [4] considered NMF for two
gene expression data sets with offset vectors. The primary objective
was to identify common gene regulatory patterns, while constant
expression levels in each data set are absorbed by the offset vec-
tors. This approach is inadequate for more general use because an
offset vector might be insufficient to describe uncommon aspects
of data sets. Kim et al. [19] proposed group-sparsity regulariza-
tion for NMF that can be used to discover common and different
latent components from multiple data sets. Though their approach
has the flexibility to discover the hidden structure of shared latent
components, it does not explicitly incorporate the dissimilarities
of unshared latent components, which is therefore not effective in
contrasting data sets. Gupta et al. [15] imposed shared basis regu-
larization on NMF for joint modeling of two related data sources.
Their approach is less flexible than our method in that they set the
shared space to be strictly identical. Simultaneous nonnegative fac-
torization has also been used in different contexts such as knowl-
edge transfer among multiple data sets [29], clustering that utilizes

different views of a data set [25], and simultaneous clustering for
multi-task learning [1].

Discriminative topic modeling, a variant of widely-used latent
Dirichlet allocation [5], has been studied mainly to improve regres-
sion or classification performances [22, 31]. In [22, 31], class labels
are utilized in order to form the latent topics so that the correspond-
ing topical representations can be used to make accurate predic-
tions. On the other hand, our primary goal is to discover the com-
mon and discriminative aspects of data sets, in order to gain bet-
ter understanding of data. In [11], a topic modeling-based method
has been proposed for generating updated summarization, with a
goal to generate a compact summary of the new information, given
a previously existing document set. Our work addresses a rather
general scenario of comparing and contrasting multiple documents
sets.

There exist other related research results in pattern mining [13],
co-clustering [27], and network analysis [10]. Most of these results
are based on heuristic approaches whereas ours is built on a the-
oretically sound framework. In addition, the existing studies are
for the problems different from document analysis, and thus they
are mostly limited to particular application domains such as bioin-
formatics. In this paper, we propose a more systematic NMF-based
topic modeling approach that can extract discriminative topics from
a wide variety of text data collections.

3. PROPOSED METHOD
In this section, we first introduce NMF in the topic modeling

context. We then formulate our model and propose two meth-
ods, namely, the batch-processing approach (Section 3.3) and the
pseudo-deflation approach (Section 3.4). The batch-processing ap-
proach produces common topics and discriminative topics by min-
imizing a single optimization criterion. The pseudo-deflation ap-
proach solves multiple optimization problems in a deflation-like
manner and uses only the most representative keywords.

3.1 Preliminaries
Nonnegative matrix factorization (NMF) for document topic

modeling. Given an input matrix X ∈ R
m×n
+ , where R+ denotes

the set of nonnegative real numbers, and an integer k≪min(m, n),
NMF solves a lower-rank approximation given by

X ≈WHT, (1)

where W ∈ R
m×k
+ and H ∈ R

n×k
+ are factor matrices. This approx-

imation can be achieved via various distance or divergence mea-
sures such as a Frobenius norm [17, 20], Kullback-Leibler diver-
gence [23] and other divergences [12, 24]. Our methods are based
on the widely-used Frobenius norm as follows:



min
W,H≥0

f (W,H) =
∥

∥

∥
X −WHT

∥

∥

∥

2

F
. (2)

The constraints in the above equation indicate that all the entries
of W and H are nonnegative. In topic modeling, xl ∈ R

m×1
+ , the

l-th column vector of X , corresponds to the bag-of-words repre-
sentation of document l with respect to m keywords, possibly with
some pre-processing, e.g., inverse-document frequency weighting
and column-wise L2-norm normalization. A scalar k corresponds
to the number of topics. The l-th nonnegative column vector of W

represents the l-th topic as a weighted combination of m keywords.
A large value in a column vector of W indicates a close relation-
ship of the topic to the corresponding keyword. The l-th column
vector of HT represents document l as a weighted combination of
k topics, i.e., k column vectors of W .

3.2 Problem Formulation
Simultaneous common and discriminative topic modeling. Given
a document set with n1 documents and another document set with
n2 documents, our goal is to find k (= kc + kd) topics from each
document set, among which kc topics are common between the two
document sets and kd topics are different between them.

Suppose we are given two nonnegative input matrices, X1 ∈R
m×n1
+

and X2 ∈ R
m×n2
+ , representing the two document sets and integers

kc and kd . As shown in Fig. 3, we intend to obtain the NMF ap-
proximation of each input matrix as

X1 ≈W1HT

1 and X2 ≈W2HT

2 ,

respectively, where Wi =
[

Wi,c Wi,d

]

∈ R
m×k
+ , Wi,c ∈ R

m×kc

+ ,

Wi,d ∈ R
m×kd

+ , and Hi =
[

Hi,c Hi,d

]

∈ R
ni×k
+ for i = 1, 2. We

want to ensure the two topic sets for the common (or discrimina-
tive) topics represented as the column vectors of W1,c and W2,c (or
W1,d and W2,d) are as similar (or different) as possible.

We introduce two different penalty functions fc(·, ·) and fd(·, ·)
for commonality and distinctiveness, respectively. A smaller value
of fc(·, ·) (or fd(·, ·)) indicates that a better commonality (or dis-
tinctiveness) is achieved. Using these terms, our problem is to op-
timize

min
W1,H1,W2,H2≥0

1

n1

∥

∥

∥
X1−W1HT

1

∥

∥

∥

2

F
+

1

n2

∥

∥

∥
X2−W2HT

2

∥

∥

∥

2

F

+α fc(W1,c,W2,c)+β fd(W1,d ,W2,d) (3)

subject to ‖(W1)·l‖2 = 1, ‖(W2)·l‖2 = 1 for l = 1, · · · ,k,

which indicates that, while performing lower-rank approximations
on each of the two input matrices, we want to minimize both (1)
the penalty for the commonality between the column set of W1,c

and that of W2,c and (2) the penalty for the distinctiveness between

the column set of W1,d and that of W2,d . The coefficients 1
n1

and 1
n2

corresponding to the first and the second terms in Eq. (3) play a role
of maintaining the balance between the different number of data
items in X1 and X2. The parameters α and β control the weights of
penalty functions for the approximation term. By solving this prob-
lem, we intend to reveal the common as well as the discriminative
sets of topics between two data sets.

3.3 Batch-Processing Approach
To design an algorithm to solve Eq. (3), we first need to define

fc(W1,c,W2,c) and fd(W1,d ,W2,d). For algorithmic simplicity, we
set them as

Figure 3: The illustration of our joint NMF-based topic modeling.
Given the two term-document matrices, X1 and X2, the columns
of W1,c and W2,c represent common topics while those of W1,d and
W2,d represent the discriminative topics.

fc(W1,c,W2,c) =
∥

∥W1,c−W2,c

∥

∥

2

F
and (4)

fd(W1,d ,W2,d) =
∥

∥

∥
WT

1,dW2,d

∥

∥

∥

1,1
, (5)

where ‖·‖1,1 indicates the absolute sum of all the matrix entries.
By plugging Eqs. (4)-(5) into Eq. (3), our overall objective function
becomes

min
W1,H1,W2,H2≥0

1

n1

∥

∥

∥
X1−W1HT

1

∥

∥

∥

2

F
+

1

n2

∥

∥

∥
X2−W2HT

2

∥

∥

∥

2

F

+α
∥

∥W1,c−W2,c

∥

∥

2

F
+β

∥

∥

∥
WT

1,dW2,d

∥

∥

∥

1,1
(6)

subject to ‖(W1)·l‖2 = 1, ‖(W2)·l‖2 = 1 for l = 1, · · · ,k.

Using Eq. (4), we minimize the squared sum of element-wise dif-
ferences between W1,c and W2,c. In Eq. (5), the (i, j)-th component

of WT

1,dW2,d corresponds to the inner product between w
(i)
1,d , the i-th

topic vector of W1,d , and w
( j)
2,d , the j-th topic vector of W2,d . Thus,

Eq. (5) represents the sum of the inner product values between all
the possible column pairs between W1,d and W2,d . By imposing
the constraint ‖(Wi)·l‖2 = 1 and minimizing the sum of the abso-
lute values, we encourage the sparsity in these inner products so
that some of them become exactly zero. For any two nonnegative
vectors u, v ∈ R

m×1
+ , their inner product uTv = ∑m

p=1 upvp is zero
when for each p, either up = 0 or vp = 0. Therefore, the penalty
term based on Eq. (5) enforces each keyword to be related to only
one topic, generating more discriminant topics representing differ-
ences between the two data sets.

Optimization. To solve Eq. (6), we propose an algorithm based on
a block-coordinate descent framework that guarantees every limit
point is a stationary point. We divide the set of elements in W

and H, which are our variables to solve, into groups and iteratively
solve each group while fixing the rest. First, we represent WiHi as
the sum of rank-1 outer products [18], i.e.,

WiHi =
k

∑
l=1

w
(l)
i

(

h
(l)
i

)T

(7)

=
kc

∑
l=1

w
(l)
i,c

(

h
(l)
i,c

)T

+
kd

∑
l=1

w
(l)
i,d

(

h
(l)
i,d

)T

for i = 1,2.

where w
(l)
i , h

(l)
i , w

(l)
i,c , h

(l)
i,c , w

(l)
i,d , and h

(l)
i,d represent the l-th column

vectors of Wi, Hi, Wi,c, Hi,c, Wi,d , and Hi,d , respectively, and update
these vectors one by one. By setting the derivatives of Eq. (3) to
zero with respect to each of these vectors, we obtain the updating



rules as

w
(l)
1,c ←

[

(

HT

1 H1

)

ll
(

HT

1 H1

)

ll
+n1α

w
(l)
1,c

+
X1h

(l)
1,c−W1

(

HT

1 H1

)

·l +n1αw
(l)
2,c

(

HT

1 H1

)

ll
+n1α





+

, (8)

w
(l)
1,d←



w
(l)
1,d +

X1h
(l)
1,d −W1

(

HT

1 H1

)

·l −n1
β
2 ∑

kd

p=1 w
(p)
2,d

(

HTH
)

ll





+

, (9)

h
(l)
1 ←

[

h
(l)
1 +

(

XT

1 W1

)

·l −
(

H1WT

1 W1

)

·l
(

WT

1 W1

)

ll

]

+

, (10)

where [x]+ = max(x, 0) and (·)ll represents the (l, l)-th component

of a matrix in parentheses. After the update, w
(l)
1 is normalized

to have a unit L2-norm, and h
(l)
1 is multiplied correspondingly by

∥

∥

∥
w
(l)
1

∥

∥

∥

2
for l = 1, · · · , k. The updating rules for w

(l)
2,c, w

(l)
2,d , and h

(l)
2

can also be derived in a similar manner.

Computational Complexity. The proposed approach maintains
the same complexity as the case of solving two separate standard
NMF problems using the widely-used hierarchical alternating least
squares (HALS) algorithm [9]. Both approaches follow the same
block coordinate descent framework and require an equivalent com-
putational cost for each iteration in this framework. In detail, updat-

ing h
(l)
i is identical in both approaches, but the main difference lies

in updating w
(l)
i in which our approach has additional calculations

as shown in the last terms of Eqs. (8)-(9). Since HT
i Hi and XiHi

can be pre-computed, the computational complexity of updating

w
(l)
i is O(mk) in the standard NMF algorithm, where m is the num-

ber of keywords and k is the number of topics. In our approach, the

computational complexity of updating w
(l)
i,c is O(mk) and that of up-

dating w
(l)
i,d is O(m(k+kd)), which is still O(mk) since k = kc +kd .

Thus, the computational complexity of our approach for a single

iteration of updating both w
(l)
i ’s and h

(l)
i ’s still remains the same as

that of the standard NMF, i.e.,O(mnik).

3.4 Pseudo-Deflation Approach
In this section, we first address several issues with the batch-

processing algorithm from a practical standpoint and propose a
novel method that considers only the most representative keywords
in each topic. Similar to a rank-deflation procedure common in ma-
trix factorization, this approach discovers discriminative topics one
by one, hence the name “pseudo-deflation” approach.

The first point to discuss is that the penalty term for discrimi-
native topics, as shown in Eq. (5), incorporates all the keywords
(i.e., all m dimensions) when computing the inner product-based
penalty value of two topic vectors. However, often in practice, only
a small number of the most representative keywords are checked
to understand the computed topics. Therefore, a better alternative
would be to calculate the inner product in the penalty term using
only the most representative keywords while ignoring the remain-
ing insignificant keywords of each topic. Given a fixed number t, let

R
(i)
1,d and R

( j)
2,d denote the sets of the t most representative keyword

dimensions or indices from the two topic vectors, w
(i)
1,d and w

( j)
2,d ,

respectively. Then, the (i, j)-th component of the penalty term for
fd(W1,d ,W2,d) can be re-defined as

(

fd(W1,d ,W2,d)
)

i j
=
(

w
(i)
1,d

)T

Im

(

R
(i)
1,d ∪R

( j)
2,d

)

w
( j)
2,d (11)

where the diagonal matrix Im (S) ∈ R
m×m
+ is defined as

(Im (S))pp =

{

1, p ∈ S

0, p /∈ S.

Note that S ⊂ {1, · · · ,m} is a set of keyword dimensions/indices.

We choose S as R
(i)
1,d ∪ R

( j)
2,d so that only the most representative

keyword dimensions are used in the penalty function for distinc-
tiveness.

Even though Eq. (11) provides more discriminative topics in
terms of their most representative keywords, the main problem in

using it in our joint NMF formulation is that the sets R
(i)
1,d and R

( j)
2,d

can dynamically change as the intermediate results of topic vectors,

w
(i)
1,d and w

( j)
2,d , keep getting updated during algorithm iterations be-

cause a newly updated topic vector can have newly added/removed
representative keywords. This causes our objective function, Eq. (3),
itself to change over the iterations, and thus we can no longer guar-
antee that our algorithm monotonically improves the objective func-
tion value.

To overcome this issue, we now propose a pseudo-deflation-
based approach that solves Eq. (3) incorporating Eq. (11). Our
basic idea is to find discriminative topics in a greedy manner in or-
der to keep the most representative keyword set of each topic fixed.
In other words, we solve and fix one discriminative topic pair per

stage. In the l-th stage, we find a discriminative topic pair w
(l)
1,d and

w
(l)
2,d that are distinct from the discriminative topics obtained from

the previous stages, {w
(1)
2,d , · · · ,w

(l−1)
2,d } and {w

(1)
1,d , · · · , w

(l−1)
1,d } re-

spectively, and are different from each other. As a result, the entire
solution is discovered after kd stages.

The proposed approach is outlined as follows: First, given the
two input matrices X1 and X2 and integers kc and kd , we set

ks
c = kc + kd = k and ks

d = 0

where ks
c (or ks

d) is the temporarily assigned number of common (or
discriminative) topics at each stage, and solve Eq. (12). We first at-
tempt to find k common topics of X1 and X2 in the first stage. In the
next stage, we decrease ks

c and increase ks
d by 1 (to find k−1 com-

mon topics and 1 discriminative topic) and solve a new objective
function

min
W1,c,w

(ks
d
)

1,d ,H1,W2,c,w
(ks

d
)

2,d ,H2≥0

1

n1

∥

∥

∥
X1−W1HT

1

∥

∥

∥

2

F
+

1

n2

∥

∥

∥
X2−W2HT

2

∥

∥

∥

2

F

+
α

ks
c

ks
c

∑
l=1

∥

∥

∥
w
(l)
1,c−w

(l)
2,c

∥

∥

∥

2

2
+

β

ks
d
−1

ks
d−1

∑
l=1

(

w
(l)
1,d

)T

Im

(

R
(l)
1,d

)

w
(ks

d)
2,d

+
β

ks
d
−1

ks
d−1

∑
l=1

(

w
(l)
2,d

)T

Im

(

R
(l)
2,d

)

w
(ks

d)
1,d + γ

(

w
(ks

d)
1,d

)T(

w
(ks

d)
2,d

)

(12)

subject to ‖(W1)·l‖= 1, ‖(W2)·l‖= 1 for l = 1, · · · ,k.

We progressively solve this equation after decreasing ks
c and in-

creasing ks
d values by one until ks

d becomes kd .

When solving Eq. (12), we fix w
(l)
i,d’s for i= 1, 2 and l = 1, · · · , ks

d−

1 as those obtained from previous stages, and solve only the rest of
the topics in Wi. In this manner, each pair of discriminative topics

w
(l)
1,d and w

(l)
2,d is determined one by one and is fixed throughout the

subsequent stages that use different ks
c and ks

d values. Notice that
a typical successive rank-1 deflation method, which is common in
singular value decomposition, e.g., the power iteration [14], does
not guarantee an optimal solution for NMF [18]. For example, the
basis vector obtained by a rank-1 NMF is not necessarily part of



those obtained by a rank-2 NMF, and they can be quite different. To
effectively handle this problem, our approach maintains the same
number of topics throughout the progression of stages while a sub-
set of the basis vectors are fixed. In this respect, we call our method
a pseudo-deflation approach.

The main advantage of such a pseudo-deflation approach is the
ability to maintain the fixed set of the representative keyword in-

dices. By fixing w
(l)
i,d’s from the previous stages, we can now main-

tain the constant set R
(l)
i,d’s for them in the penalty terms for dis-

tinctiveness, as shown in the fourth and the fifth terms in Eq. (12),
which makes the objective function remain the same over iterations
within a single stage. Finally, the last term in Eq. (12) plays a role

of enhancing the distinction between the topic pair w
(ks

d)
1,d and w

(ks
d)

2,d .

Nonetheless, w
(ks

d)
i,d can still have a varying set R

(ks
d)

i,d during itera-

tions, and thus we just use the inner product over the entire set of
dimensions.

Parameter adaptation. The proposed pseudo-deflation method
contains various elements contributing to the penalty terms for com-
monality and distinctiveness while ks

c and ks
d change. Thus, unlike

the parameters α and β in Eq. (6), we adaptively change the regu-
larization parameters so that the total penalty values are compara-
ble among various ks

c and ks
d values. Therefore, the penalty terms of

Eq. (12) contain denominators as the number of total contributing
columns for each penalty term.

Optimization. Eq. (12) can be optimized in a similar manner
shown in Eqs. (8)-(10) based on the block-coordinate descent frame-
work. The updating rules can be described as

w
(l)
1,c ←

[

(

HT

1 H1

)

ll
(

HT

1 H1

)

ll
+n1α

w
{l}
1,c (13)

+
X1h
{l}
1,c −W1

(

HT
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,

and the same updating rule applies for h
(l)
1 as in Eq. (10). After the

update, w
(l)
1 is normalized to have a unit L2-norm, and h

(l)
1 is mul-

tiplied correspondingly by
∥

∥

∥
w
(l)
1

∥

∥

∥

2
for l = 1, · · · , k. The updating

rules for w
(l)
2,c, w

(l)
2,d , and h

(l)
2 can also be derived in a similar manner.

Finally, our algorithm is summarized in Algorithm 1.

Initialization. A single stage inside the for-loop in Algorithm 1 can
be considered as introducing an additional pair of discriminative
topics between two data sets while removing a common topic pair,
as ks

c and ks
d get updated. In this process, it is important to provide a

capability to maintain a consistent result set and smooth transition.
To this end, we use the following initialization strategy for Eq. (12).
Given a result set for particular values of ks

c and ks
d , we choose a

common topic pair that has the lowest approximation capability for
input matrices and set them as the initial discriminative topic pair
for the next stage, i.e.,

argmin
w
(l)
1,c,w

(l)
2,c

2

∑
i=1

∥

∥

∥

∥

w
(l)
i,c

(

h
(l)
i,c

)T

(15)

−max

(

w
(l)
i,c

(

h
(l)
i,c

)T

−Xi, 0m×n

)∥

∥

∥

∥

2

F

,

where the max operation applies in an element-wise manner.

Algorithm 1: The Pseudo-deflation-based joint NMF

Input: Two input matrices X1 and X2, integers kc and kd , and
parameters α , β , and γ

Output: Wi =
[

Wi,c Wi,d

]

∈ R
m×k
+ and

Hi =
[

Hi,c Hi,d

]

∈ R
ni×k
+ for i = 1, 2

Initialize Wi and Hi for i = 1, 2;
for ks

d ← 0 to kd do

ks
c← kc + kd − ks

d ;
/* For ks

c and ks
d, solve Eq. (12) */

repeat

Update Wi’s using Eqs. (13)-(14);
Update Hi’s using Eq. (10);
Normalize columns of Wi’s to have unit norms and
scale Hi’s accordingly;

until a stopping criteria is satisfied;

Choose wl
1,c and wl

2,c satisfying Eq. (15);

/* Remove wl
i,c from Wi,c */

Wi,c←Wi,c\w
l
i,c for i = 1, 2;

/* Append wl
i,c to Wi,d on the right side */

Wi,d ←
[

Wi,d wl
i,c

]

for i = 1, 2;

end

Computational Complexity. Similar to the batch processing ap-
proach, the pseudo-deflation approach involves additional compu-
tations (the last term of Eq. (13) and the last two terms of Eq. (14))

in the updating step of w
(l)
i compared to the standard NMF. Since

HT
i Hi and XiHi can be pre-computed, the computational complex-

ity of updating w
(l)
i,c is O(mk) and that of updating w

(ks
d)

i,d is O(mk+

tks
d), where t is the number of top keyword, which then becomes

equivalent to O(mk) since the number of top keywords of our inter-
est, t, is relatively small. Therefore, the overall complexity of the

pseudo-deflation approach for an iteration of updating both w
(l)
i ’s

and h
(l)
i ’s, is still O(mnik), which is the same as that of the standard

NMF. Note that the complexity of the pseudo-deflation approach is
approximately kd times that of the batch processing approach since
it solves Eq. (12) in kd stages. However, the problem size decreases
as the stage progresses since the pseudo-deflation approach do not

solve for w
(l)
i,d’s that are already obtained from the previous stages.

4. QUANTITATIVE EVALUATION
In this section, we evaluate our proposed methods using syn-

thetic as well as various real-world data sets. First, we present
quantitative results on synthetic data to show the superiority of the
pseudo-deflation method against the batch-processing method. We
then provide the results of our methods using real-world data sets
and compare them with other alternative solutions.

4.1 Basis Reconstruction on Synthetic Data
We conduct analysis on a synthetic data set and compare the

batch-processing approach and the pseudo-deflation approach.
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(a) Ground-truth matrices
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(c) The pseudo-deflation method

Figure 4: Ground-truth matrices for W1(left) and W2(right) and their computed results by the two proposed approaches.

4.1.1 Data Generation

We apply our proposed methods to a synthetic data set for which
the ground-truth factor matrices are known. We generate the two
input matrices, Xi ∈R

1600×300
+ for i= 1, 2, which can be considered

as term-document matrices based on their factor matrices Wi,c =
[

w
(1)
i,c · · · w

(6)
i,c

]

∈ R
1600×6
+ and Wi,d =

[

w
(1)
i,d · · · w

(4)
i,d

]

∈

R
1600×4
+ as

(

w
(l)
i,c

)

p
=

{

1, 100(l−1)< p≤ 100l

0, otherwise
, and

(

w
(l)
i,d

)

p
=

{

1, idx(i, l)< p≤ idx(i, l)+100

0, otherwise
,

where idx(i, l) = 600+ 400(i−1) + 100(l−1). In other words,

each of the six common topic pairs, w
(l)
1,c and w

(l)
2,c, contains nonzero

elements in 100 common dimensions while the four discriminative
topic pairs (eight in total) have 100 nonzero entries in a completely
disjoint dimension set. In addition, each row of Hi ∈R

300×10
+ is set

to be a unit vector that has only one nonzero entry at a randomly
selected dimension. Afterwards, we add a random Gaussian noise
to each entry of Wi and Hi and form Xi as the product of them,
WiH

T
i , with an additional random Gaussian noise added to each

element of them.

4.1.2 Results

Fig. 4(a) shows the resulting ground-truth matrices for W1 (left)
and W2 (right). Figs. 4(b) and 4(c) show the examples of the re-
sulting W1 (left) and W2 (right), which are computed by the batch-
processing and the pseudo-deflation methods, respectively. As can
be seen in these figures, the latter successfully reconstructs the
ground-truth matrices while the batch-processing method does not.
To test our claim, we run each algorithm 20 times with random
initializations while providing identical initializations to both al-
gorithms at each run. Fig. 5 shows the reconstruction error of Xi

over 20 runs of each algorithm with different kd’s. As expected,
both methods show minimum reconstruction error when kd is set
to 6, which is the correct number of discriminative topic pairs.
The pseudo-deflation method consistently outperforms the batch-
processing approach in terms of a reconstruction error with a much
smaller variance. In the results, this indicates that the pseudo-

deflation method is less susceptible to noise in the data and it gives

more consistent results that are closer to the true solution among

multiple runs.

4.2 Algorithimic Evaluation

4.2.1 Experimental Setup

To analyze the behavior of our proposed methods, we use the fol-
lowing real-world document data sets with different partitionings:
VAST-InfoVis papers published in the two closely related IEEE
conferences in the field of visualization, namely, Visual Analyt-
ics Science and Technology (VAST) and Information Visualization
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for the synthetic data. The results are averaged over 20 runs, and
the error bar represents their variance. k (=kc + kd) is set to 10.

(InfoVis) (2 groups, 515 documents, 5,935 keywords),1 and Four
Area paper data published in machine learning (ML), databases
(DB), data mining (DM), and information retrieval (IR) fields (4
groups, 15,110 documents, 6,487 keywords).2

For each pair of data sets (one pair for VAST-InfoVis data set
and six pairs for Four Area data set), we evaluated the quality of
the topic modeling results in terms of three different measures: the
reconstruction error, the distinctiveness score, and the commonal-
ity score. The reconstruction error is defined as the sum of the first
two terms in Eq. (3) (See the caption of Fig. 5). The commonal-
ity score is defined as Eq. (4) divided by the number of common

topics, kc, indicating how close common topics w
(l)
1 ’s are to their

corresponding common topics w
(l)
2 ’s in the other document set. Fi-

nally, we use the distinctiveness score as an averaged symmetrized
Kullback-Leibler divergence between all the discriminative topic
pairs, i.e.,

1

2k2
d

kd

∑
i=1

kd

∑
j=1

[

(

w
(i)
1,d

)T

log(w
(i)
1,d)+

(

w
( j)
2,d

)T

log(w
( j)
2,d)

−
(

w
(i)
1,d

)T

log(w
( j)
2,d)−

(

w
( j)
2,d

)T

log(w
(i)
1,d)]

]

, (16)

which indicates how distinct the obtained discriminative topics are.
For the first measure, a lower value indicates a better quality while
a higher value indicates a better quality for the second and the third
measures.

We compared three different methods: (1) the standard NMF, (2)
the batch-processing method, and (3) the pseudo-deflation method.
For the first one, after obtaining the two topic sets by applying NMF
separately to each of the two sets, we choose kc topic pairs that
have the highest commonality scores and treat them as the common
topic pairs and the rest as the discriminative ones. For parameters
to be specified to run the batch-processing method (Eq. (6)) and the

1http://www.cc.gatech.edu/gvu/ii/jigsaw/datafiles.
html
2http://dais.cs.uiuc.edu/manish/ECOutlier/



Table 1: The evaluation results based on three different measures on real-world data sets. The reported results are averaged values over 20
runs. The best performance values are shown in bold.

Reconstruction error Commonality score Distinctiveness score

Data sets
Standard Batch Pseudo- Standard Batch Pseudo- Standard Batch Pseudo-

NMF processing deflation NMF processing deflation NMF processing deflation

VAST-InfoVis 1.7116 1.7804 1.7409 .3611 .0011 .0041 206.1248 188.9593 239.1429

Four Area (ML-DB) .0705 .0712 .0710 .4409 .0011 .0003 108.0325 105.8713 121.1697

Four Area (ML-DM) .0737 .0746 .0758 .3206 .0007 .0005 111.9828 117.7371 119.3134

Four Area (ML-IR) .0717 .0726 .0725 .3162 .0012 .0005 105.8652 104.1647 116.0636

Four Area (DB-DM) .0778 .0791 .0787 .4412 .0013 .0004 95.6500 109.4650 110.2718

Four Area (DB-IR) .0758 .0771 .0764 .2635 .0012 .0004 96.1121 99.8529 103.6566

Four Area (DM-IR) .0790 .0802 .0800 .2905 .0011 .0004 87.5875 97.4784 103.6090

pseudo-deflation method (Eq. (12)), we adaptively set them to be
sufficiently large so that no common keywords occur among the ten
most representative keywords between discriminative topics from
different data sets. At the same time, we make sure that the ten
most representative keywords between common topic pairs become
identical.

4.2.2 Results

Table 1 shows the quantitative comparisons among different meth-
ods with respect to various measures. It is not surprising to see
that the standard NMF achieves the lowest reconstruction errors
for all the cases since its objective is entirely to minimize the re-
construction error. However, its commonality as well as discrimi-
native scores are shown to be significantly lower compared to the
two other methods, which implies the limitation of the standard
NMF for comparison/contrasting purposes.

The reconstruction errors of the two other methods are compa-
rable to the standard NMF results. For all the cases except for the
ML-DB case in the Four Area data set, the pseudo-deflation method
shows better reconstruction errors than the batch-processing method,
but at the same time, the former generally performs better than
the latter in terms of both the commonality and the discriminative
scores, as seen in all the Four Area data cases. These observations
are consistent with the previous results using the synthetic data
set (Section 4.1), which highlights the advantage of the pseudo-
deflation method over the batch-processing method.

4.3 Clustering Performance
We now apply our method for clustering of real-world data sets.

We assume that multiple data sets share common clusters while
each of them has its own exclusive clusters. Our hypothesis here
is that by jointly performing clustering on multiple data sets allow-
ing both common and discriminative topics, our method will have
advantages over other methods that perform independent clustering
on each data set and other joint NMF-based methods [15, 25].

4.3.1 Experimental Setup

To evaluate our method in clustering applications, we used var-
ious real-world document data sets: 20 Newsgroup data (20 clus-
ters, 18,828 documents, 43,009 keywords),3 Reuters data (65 clus-
ters, 8,293 documents, 18,933 keywords),4 and Four Area data set
described in Section 4.2. All these data sets are encoded as term-
document matrices using term frequency values, and for each data
set, we formed two document subsets as shown in Table 2. We note
that even though the two subsets have common clusters, we ran-

3http://qwone.com/~jason/20Newsgroups/
4http://www.cc.gatech.edu/~hpark/othersoftware_
data.php

domly split the data items in such clusters to the two subsets so that
no data items overlap between them.

We compared the three following methods to our methods (batch-
processing and pseudo-deflation approaches): (1) the standard NMF,
which is applied separately to each subset, (2) Multi-View NMF
(MV-NMF) [25], and (3) regularized shared subspace NMF (RS-
NMF) [15]. For MV-NMF, the problem setting assumes the in-
put data sets are two different representations of a single data set,
whereas our method assumes that the two different data sets are
represented in the same feature space. To resolve this discrepancy,
we used the transposed version of MV-NMF so that it can be ap-
plied in our setting.

The parameters used in the following experiments are as follows.
For the batch processing method, we set parameter α (in Eq. (6))
as 100 and parameter β (in Eq. (6)) as 10. For the pseudo-deflation
method, we set parameter α (in Eq. (12)) as 100 and parameters β
and γ (in Eq. (12)) as 10, but we found that our method is not sen-
sitive to these parameter values. For MV-NMF, we used the default
setting in their implementation available on the author’s webpage.5

For RS-NMF, we used a common weighting parameter a as 100,
as suggested in [15]. We used the identical initialization for all the
compared methods.

4.3.2 Results

Our experiments tested how well the computed clustering out-
puts match the ground-truth cluster labels. We first computed the
cluster index of each data item as the most strongly associated topic
index based on its corresponding column vector of Hi. Next, we
re-mapped the obtained cluster indices to the ground-truth labels
using the Hungarian algorithm [21]. Then, we applied four widely-
adopted cluster quality measures to the computed cluster indices:
accuracy, normalized mutual information, averaged cluster entropy,
and cluster purity [26].

Fig. 6 shows these results from 100 runs of each case. In all
the results, our methods, batch processing and pseudo-deflation
approaches, outperform existing methods such as MV-NMF and
RS-NMF in all the four measures. The reason for inferior perfor-
mance of MV-NMF is because it aims to find only common topics
and do not consider discriminative topics. On the other hand, RS-
NMF can take into account both common as well as discriminative
topics but its main drawback is the lack of flexibility since it im-
poses the common topics strictly to be the same across multiple
data sets. Between the batch processing and the pseudo-deflation
method, the latter generally shows better performances than the for-
mer except for the accuracy measure from the Four Area data set
(Fig. 6(c)). This shows the superiority of our carefully designed
pseudo-deflation method in practical applications.

5http://jialu.cs.illinois.edu/code/Code_multiNMF.
zip
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Figure 6: The clustering performance of the standard NMF (Stndrd), batch processing method (BP), pseudo-deflation method (PD), MV-
NMF (MV), and RS-NMF (RS) measured in terms of accuracy, normalized mutual information, cluster entropy, and cluster purity metrics.
For each case, 100 repetitive runs with different random initializations were used. Higher values indicate better performance except for
clustering entropy.

Table 2: The clusters contained in document subsets.

Common clusters Exclusive clusters in subset 1 Exclusive clusters in subset 2

20 News- ‘comp.windows.x’, ‘sci.med’, ‘alt.atheism’, ‘rec.sport.baseball’, ‘comp.sys.mac.hardware’, ‘rec.sport.hockey’,
group ‘sci.space’, ‘soc.religion.christian’ ‘sci.electronics’, ‘talk.politics.guns’ ‘sci.crypt’, ‘talk.politics.mideast’

Reuters ‘sugar’, ‘gnp’, ‘cpi’
‘crude’, ‘interest’, ‘coffee’, ‘trade’, ‘money-fx’, ‘ship’,

‘gold’, ‘reserves’ ‘money-supply’, ‘cocoa’

Four Area data mining, information retrieval machine learning database

5. TOPIC DISCOVERY EXAMPLES
Previously, we evaluated our method in terms of computing the

true low-rank factors as well as jointly clustering multiple data sets.
In this section, we discuss the meaningful topics that our method
can discover in various applications, which can broaden our in-
sights about the data. In Figs. 7-10, the results are visualized using
Wordle6 based on the weight values of the basis vectors.

5.1 VAST vs. InfoVis Conference Papers
The first case study is performed on VAST-InfoVis data set de-

scribed in Section 4.2. As shown in Fig. 7, the two venues share
the common topics of interactive visualization techniques and user
interface systems. On the other hand, the topics studied exclusively
in VAST are shown to be decision making processes as well as
high-dimensional data visualization using clustering and dimension
reduction, e.g., the paper “Similarity clustering of dimensions for
an enhanced visualization of multidimensional data” by Ankerst et
al. The exclusive topics in InfoVis include graph drawing/layout
algorithms and color blending/weaving techniques, e.g., the paper
“Weaving Versus Blending: a quantitative assessment of the infor-
mation carrying capacities of two alternative methods for convey-
ing multivariate data with color” by Hagh-Shenas et al.

6http://www.wordle.net

5.2 Loan Description Data in Micro-finance
Next, we apply our methods to the text data available in a novel

domain of micro-finance at Kiva.org.7 Kiva.org is a non-profit web-
site where people in developing countries, who lack access to finan-
cial services for their economic sustainability, can post a loan re-
quest and in response, other people can easily lend a small amount
of money to them in a crowd-funding framework. Lending activi-
ties are entirely driven by altruism since the lenders do not gain any
financial profit or interest, and thus it is crucial to understand peo-
ple’s lending behaviors in order to increase lending activities and
help people sustain their lives. Even with such a social impact of
this domain, only a little research has been conducted so far [6, 8].

Kiva.org contains rich textual data and other information asso-
ciated with them. For example, a loan request is available in a
free text form, and it describes the borrower and the purpose of a
loan, Additionally, there exists various information about other as-
sociated entities such as lenders, lending teams (a group of lenders
with a common interest), and field partners (those helping borrow-
ers with the loan terms and conditions) in terms of their ages, gen-
ders, occupations, and geo-locations, etc. By analyzing a set of
textual descriptions of the loans that particular groups of lenders
(e.g., with the same location, occupation, etc.) or lending teams

7The processed data is available at http://fodava.gatech.
edu/kiva-data-set-preprocessed



(a) Common topics (b) Distinct topics for VAST (c) Distinct topics for InfoVis

Figure 7: The topic summaries of the research papers published in VAST vs. InfoVis conferences.

(a) Common topics (b) Distinct topics for ‘Etsy.com Handmade’ (c) A distinct topic for
‘Guys holding fish’

Figure 8: The topic summaries of the loans funded by the lending teams ‘Guys holding fish’ vs. ‘Etsy.com Handmade’.

have funded, our method can help to characterize their lending be-
haviors, which will then be utilized in increasing lending activities.
In the following, we describe several examples of such in-depth
analyses.

Lending Teams ‘Etsy.com Handmade’ vs. ‘Guys holding fish’.

First, we choose the two interesting lending teams, ‘Etsy.com Hand-
made’ and ‘Guys holding fish’, and analyze the common as well as
the distinct topics in the textual descriptions of the loans that each
team funded. Fig. 8 shows their common topics as those loans re-
lated to buying products such as food and clothes in order to resell
them in his/her stores as well as farming-related needs including
buying seeds and fertilizers. On the other hand, the former team
‘Etsy.com Handmade’, which consists of the users of an online
marketplace for handcrafted items, shows distinct characteristics
of funding the loans related to fabric, threads, beads, and sewing
machines as well as those related to clothes and shoes, e.g., the
loans to buy more fabrics, threads, and laces for tailoring business.
The team ‘Guys holding fish’ tends to fund loans related to fish-
ing, e.g., buying/repairing fishing equipment such as boats, fishing
nets, and other gears. These interesting behaviors can be expressed
as homophily, as observed by the fact that people tend to fund loans

similar to what they like.
Lending Teams ‘Thailand’ vs. ‘Greece’. Next, we choose

the two lending teams based on their geo-location, ‘Thailand’ and
‘Greece’, and analyze their topics in the loans they fund. As shown
in Fig. 9, the common loans that both teams fund are related to buy-
ing groceries and supplying stock for borrowers’ stores as well as
expanding borrowers’ business via investment. On the other hand,
the former team particularly funds the loans related to buying in-
gredients such as vegetable, fruit, meat, oil, sugar, rice, and flour in
order to resell or use them in cooking business. However, the latter
focuses on the loans related to purchasing materials such as cement,
stone, sand, or paint for construction business as well as buying
furniture/appliances for home improvement or for shops. Interest-
ingly, according to the World Bank, about 40 percent of Thailand
laborers work in agriculture while only 13 percent of Greece em-
ployment is in agriculture. We also found that construction and
manufacturing industrial products such as cement and concrete are
the two main industries in Greece. This finding shows another ex-
ample of homophily in lending behaviors.

Lender Occupations. Finally, we generated the loan subsets
that were funded by lenders characterized by their occupations. To
this end, we first formed groups of lenders whose occupation de-
scription fields contain a particular keyword. Next, we generated
the subset of loans associated with this lender group. Then, we per-
formed our topic analysis on this loan subset against a set of ran-

domly selected loans. Fig. 10 shows several examples of distinct
topics that such a lender group is associated with. For instance,
those lenders with ‘art’-related occupations like to fund the loans
related to buying and selling clothes, shoes, and cosmetics as well
as purchasing material related to sewing and house construction,
in contrast to random lenders. Another lender group associated
with the occupation ‘driver’ likes to fund the loans related to buy-
ing, repairing, or maintaining vehicles such as taxis, motorcycles,
and trucks. Finally, the lender group associated with the occupa-
tion ‘teacher’ is clearly shown to fund school-related loans such
as paying fees and tuitions for children’s schools, universities, and
trainings.

6. CONCLUSION
In this paper, we proposed a joint topic modeling approach based

on nonnegative matrix factorization that supports the needs to com-
pare and contrast multiple data sets. To solve our novel NMF-
based formulation, we utilized a block-coordinate descent frame-
work based on a rank-one outer product form and proposed the
novel pseudo-deflation method, which takes into account only the
most representative keywords. For our evaluation, we provided de-
tailed quantitative analysis using both synthetic and real-world doc-
ument data, which shows the superiority of our proposed methods.
We also provided in-depth analyses for comparing and contrasting
various document data in the context of research paper data as well
as non-profit micro-finance activity data. Through these quantita-
tive and qualitative analyses, our experiments show that the pro-
posed approach clearly identifies common and distinct topics that
provide a deep understanding when handling multiple document
data sets.

As our future work, we plan to improve the efficiency of the pro-
posed methods so that they can support on-the-fly real-time com-
putations given dynamically filtered document subsets. In addition,
we plan to build a visual analytics system where the computed com-
mon and discriminative topics are interactively visualized along
with their associated documents [7].
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