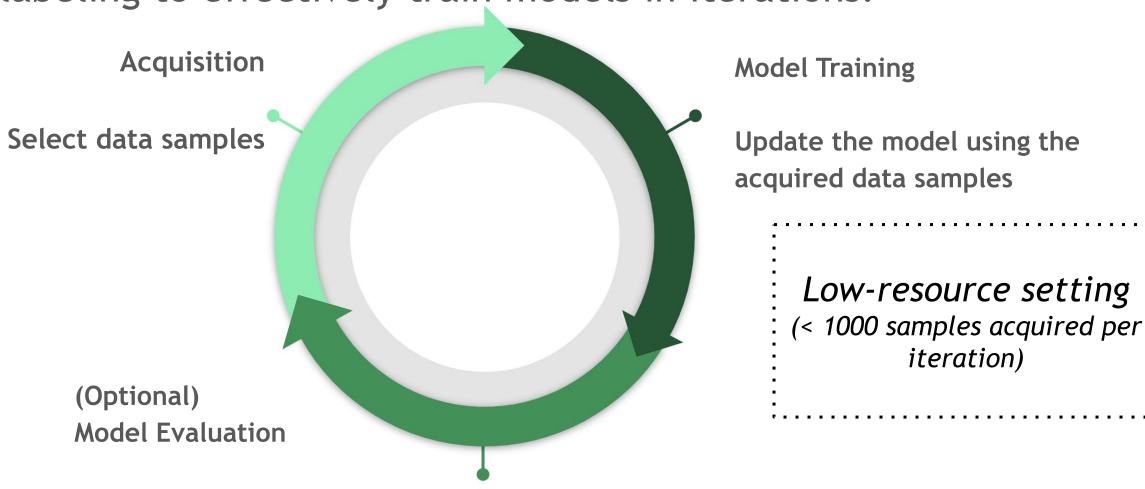


Low-resource Interactive Active Labeling for Fine-tuning Language Models

Seiji Maekawa, Dan Zhang, Hannah Kim, Sajjadur Rahman, Estevam Hruschka

1. Low-resource Active Learning (AL)

Active Learning: Acquires informative samples for human labeling to effectively train models in iterations.



2. Problem Setting

- AL has been used to fine-tune LMs for NLP tasks
 - sentiment analysis, document classification, ...
- Existing methods prioritize accuracy
 - often overlooks labeling cost and iteration latency
- Adoption of AL in practical settings such as labeling platforms can be challenging
 - requires balancing all three objectives
 - adapt to different datasets and tasks

How can we develop an AL method that balances accuracy, cost, and latency for diverse NLP tasks?

3. Acquisition Strategies for Active Learning

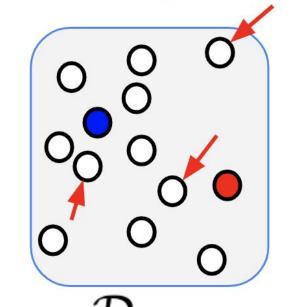
Acquire diverse samples

Acquire samples near decision

Evaluate and assess the quality of the current model

boundary

 \mathcal{D}_{pool} : Pool of unlabeled data



 \mathcal{D}_{pool}

: uncertainty-based acquisition

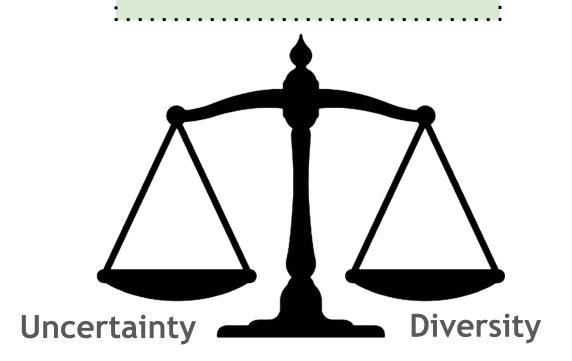
 \mathcal{D}_{pool}

- Leverages model's predictive confidence
- Acquires low confidence samples

: diversity-based acquisition

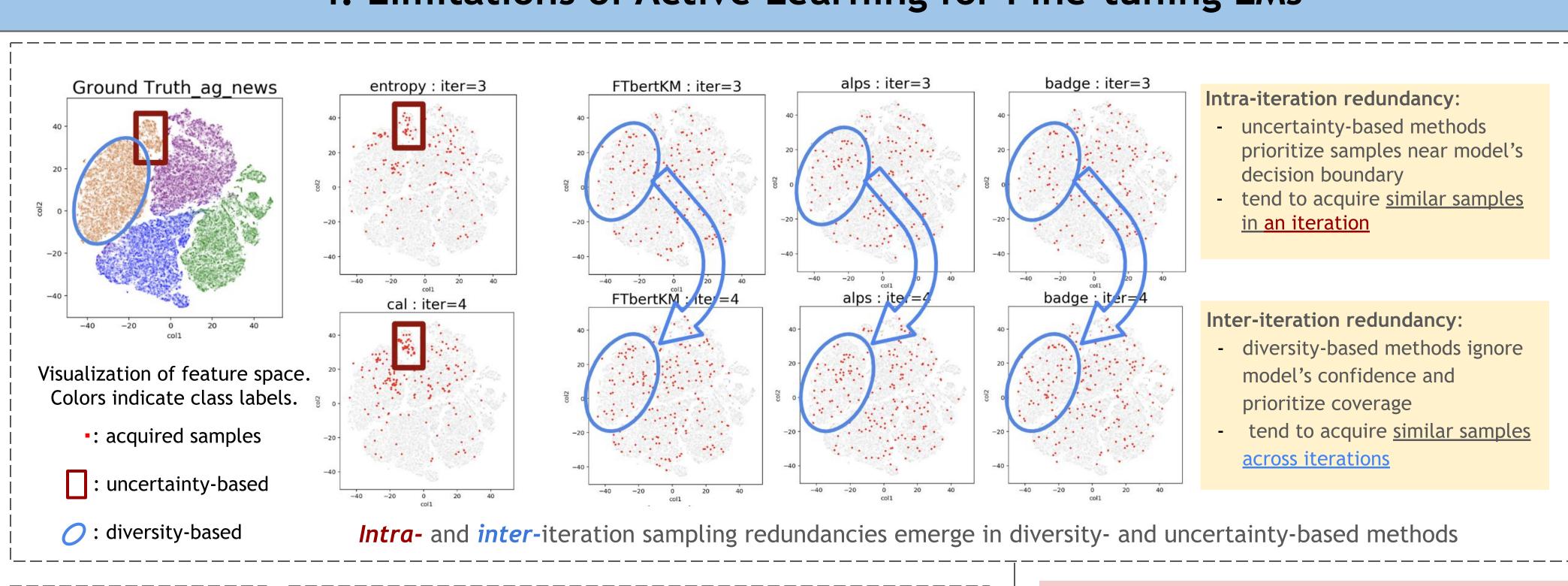
- Prioritizes coverage of classes
- Acquires a diverse group of samples

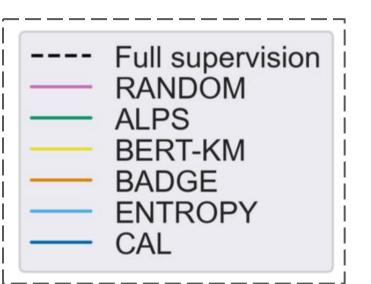
Hybrid strategies



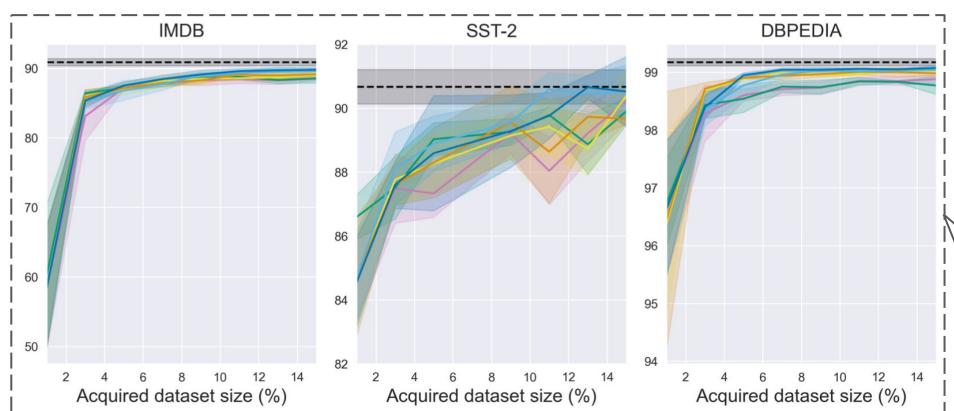
- Integrate both diversity and uncertainty
- Acquire samples based on a dual-objective function

4. Limitations of Active Learning for Fine-tuning LMs





State-of-the-art methods for fine-tuning LMs for NLP tasks



Unintended increase in the overall labeling budget

- acquires redundant samples in each iteration

Latency of sample acquisition hampering interactivity - leverages the **entire unlabeled data** for acquisition decision

Marginal gain in accuracy compared to cost and latency

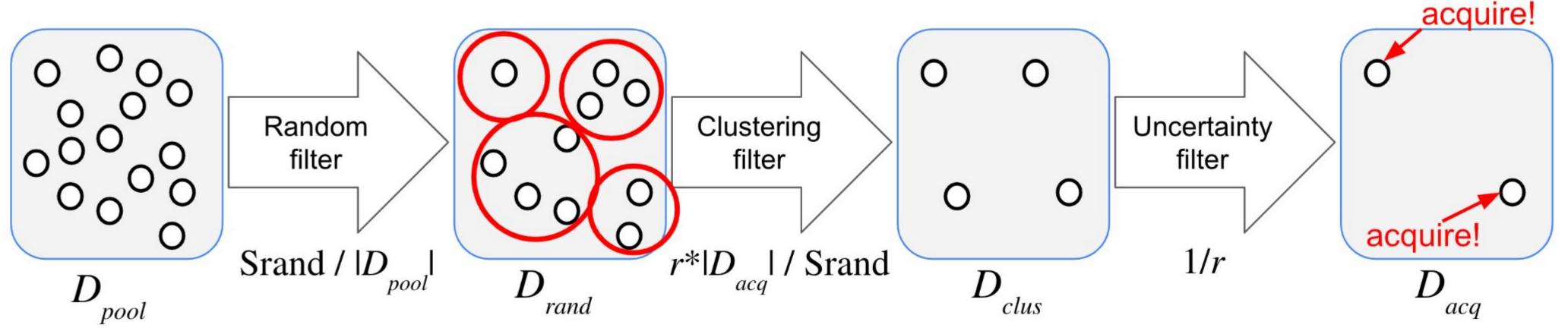
- partly due to **redundant** sample acquisition

Lack of adaptability to diverse datasets - due to **one-size-fits-all** acquisition strategies

Low-resource Interactive Active Labeling for Fine-tuning Language Models

Seiji Maekawa, Dan Zhang, Hannah Kim, Sajjadur Rahman, Estevam Hruschka

5. Tyrogue: Interactive, Adaptive, and Hybrid Active Learning



Tyrogue overview

Methods

Scope

Metric

D_{pool}: unlabeled data pool

 D_{rand} : randomly sampled data. Srand = $|D_{rand}|$

: control parameter for uncertainty-based acquisition

 D_{acq} : acquired labeling candidates

 $\underline{\text{Three step filtering}} \text{ approach to balance accuracy, latency, and cost: } \textit{random} \rightarrow \textit{diversity-based} \rightarrow \textit{uncertainty-based}$

- random filtering lowers acquisition latency by reducing the candidate pool (a reasonable D_{rand} ensures comparable accuracy)
- clustering filter ensures acquisition of diverse samples leading to <u>better coverage</u> and <u>lesser redundancy</u>
 uncertainty filter acquires samples that the model is least certain about to <u>improve predictive confidence</u>

Adaptive acquisition by balancing diversity and uncertainty

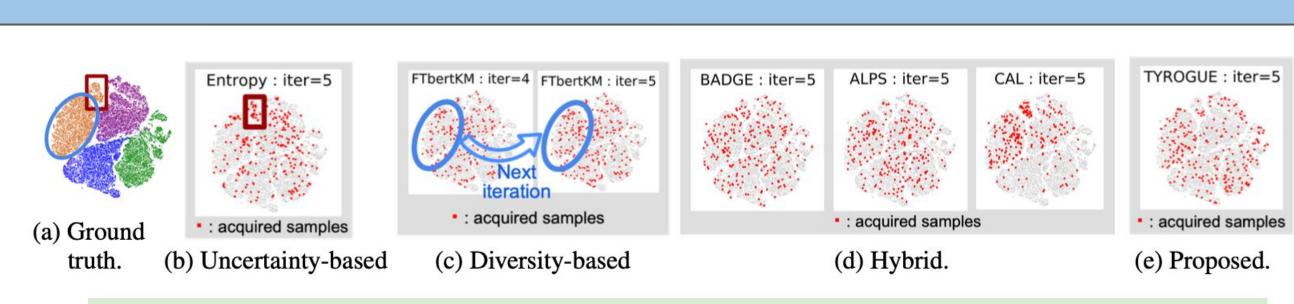
• by varying *r* users can steer the acquisition strategy of Tyrogue to adapt for diverse NLP tasks and dataset types

6. Experiment Setup

- **Diversity-based acq.**: FTbertKM, Random **Uncertainty-based acq.**: Entropy
- Hybrid acq. strategy : CAL, ALPS, BADGE
- *Tasks*: Sentiment analysis, Topic classification, :Natural language inference, Paraphrase detection
 - Avorago laboling cost (given target accuracy)
 - Average labeling cost (given target accuracy)

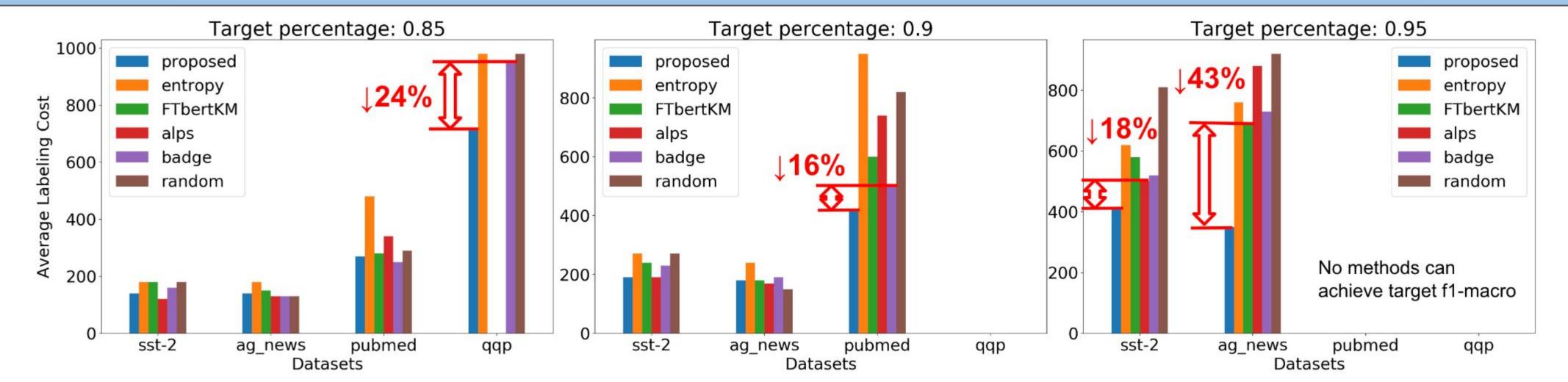
 Acquisition time (per iteration)
 - Acquisition time (per iteration)

7. Effective Utilization of Labeling Budget



Tyrogue (e) minimizes redundant sampling compared to SOTA methods

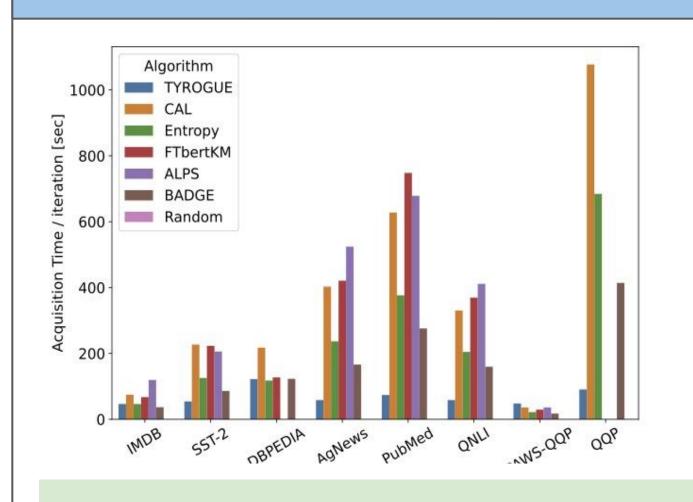
8. Labeling Cost Reduction with Comparable Accuracy



Minimization of redundant sampling <u>reduces labeling cost</u>

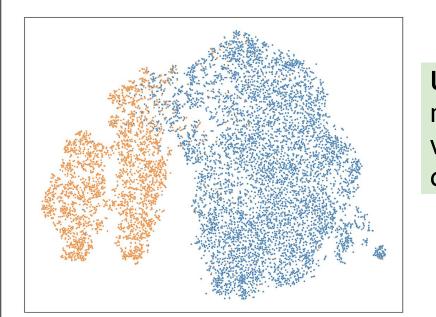
Despite reduced cost, **Tyrogue** exhibits <u>comparable accuracy</u> to SOTA

9. Low Latency Sampling



- SOTA methods exhibit **higher** latency
- Tyrogue is **indifferent** to dataset scale
- The impact of random filtering is more apparent for **larger datasets**

10. Impact of Datasets

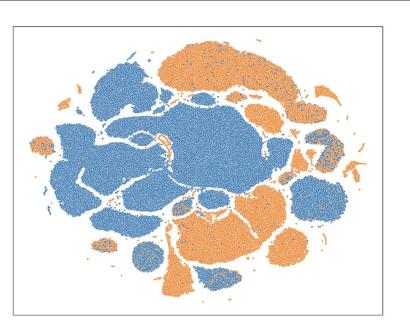


Uncertainty-based methods perform well for simple class distributions

PAWS-QQP

Hybrid methods such as Tyrogue perform well for complex class distributions

QQP



11. Concluding Remarks

We develop a low-resource interactive AL method that minimizes labeling cost (by up to 43%) and acquisition latency (by up to 11X) while achieving comparable accuracy to SOTA methods

Future focus: **integrate** with labeling platforms, apply meta-learning to enable **automated** adaptive acquisition, build **transparent** methods to explain acquisition decisions